Solutions to Worksheet for Sections 4.6 Integration by Substitution

Math S-1ab Calculus I and II

July 18, 2007

Find the following integrals. In the case of an indefinite integral, your answer should be the most general antiderivative. In the case of a definite integral, your answer should be a number. In these problems, a substitution is given.

1.
$$\int (3x-5)^{17} dx$$
, $u = 3x-5$

Solution. As suggested, we let u = 3x - 5. Then du = 3 dx so $dx = \frac{1}{3} du$. Thus

$$\int (3x-5)^{17} dx = \frac{1}{3} \int u^{17} du = \frac{1}{3} \cdot \frac{1}{18} u^{18} + C = \frac{1}{54} (3x-5)^{18} + C$$

2.
$$\int_0^4 x\sqrt{x^2+9}\,dx$$
, $u=x^2+9$

Solution. We have du = 2x dx, which takes care of the x and dx that appear in the integrand. The limits are changed to u(0) = 9 and u(4) = 25. Thus

$$\int_0^4 x\sqrt{x^2 + 9} \, dx = \frac{1}{2} \int_9^{25} \sqrt{u} \, du = \frac{1}{2} \cdot \frac{2}{3} u^{3/2} \Big|_9^{25}$$
$$= \frac{1}{3} \cdot (125 - 27) = \frac{98}{3}.$$

3.
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx, \ u = \sqrt{x}.$$

Solution. We have $du = \frac{1}{2\sqrt{x}} dx$, which means that

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2 \int e^u du = 2e^u + C$$

4.
$$\int \frac{\cos 3x \, dx}{5 + 2\sin 3x}, \ u = 5 + 2\sin 3x$$

Solution. We have $du = 6\cos 3x \, dx$, so

$$\int \frac{\cos 3x \, dx}{5 + 2\sin 3x} = \frac{1}{6} \int \frac{du}{u} = \frac{1}{6} \ln|u| + C = \frac{1}{6} \ln|5 + 2\sin 3x| + C$$

In these problems, you need to determine the substitution yourself.

5.
$$\int (4-3x)^7 dx$$
.

Solution. Let u = 4 - 3x, so du = -3x dx and $dx = -\frac{1}{3}du$. Thus

$$\int (4-3x)^7 dx = -\frac{1}{3} \int u^7 du = -\frac{u^8}{24} + C = -\frac{1}{24} (4-3x)^8 + C$$

6.
$$\int_{\pi/4}^{\pi/3} \csc^2(5x) \, dx$$

Solution. Let u = 5x, so du = 5 dx and $dx = \frac{1}{5} du$. So

$$\int_{\pi/4}^{\pi/3} \csc^2(5x) \, dx = \frac{1}{5} \int_{5\pi/4}^{5\pi/3} \csc^2 u \, du$$

$$= -\frac{1}{5} \cot u \Big|_{5\pi/4}^{5\pi/3}$$

$$= \frac{1}{5} \left[\cot \left(\frac{5\pi}{4} \right) - \cot \left(\frac{5\pi}{3} \right) \right]$$

$$= \frac{1}{5} \left[1 + \frac{\sqrt{3}}{3} \right]$$

7.
$$\int x^2 e^{3x^3-1} dx$$

Solution. Let $u = 3x^3 - 1$, so $du = 9x^2 dx$ and $dx = \frac{1}{9}du$. So

$$\int x^2 e^{3x^3 - 1} dx = \frac{1}{9} \int e^u du = \frac{1}{9} e^u + C$$
$$= \frac{1}{9} e^{3x^3 - 1}.$$

Sometimes there is more than one way to skin a cat:

8. Find $\int \frac{x}{1+x} dx$, both by long division and by substituting u = 1+x.

Solution. Long division yields

$$\frac{x}{1+x} = 1 - \frac{1}{1+x}$$

So

$$\int \frac{x}{1+x} \, dx = x - \int \frac{dx}{1+x}$$

To find the leftover integral, let u = 1 + x. Then du = dx and so

$$\int \frac{dx}{1+x} = \int \frac{du}{u} = \ln|u| + C$$

Therefore

$$\int \frac{x}{1+x} dx = x - \ln|x+1| + C$$

Making the substitution immediately gives du = dx and x = u - 1. So

$$\int \frac{x}{1+x} dx = \int \frac{u-1}{u} du = \int \left(1 - \frac{1}{u}\right) du$$
$$= u - \ln|u| + C$$
$$= x + 1 - \ln|x+1| + C$$

It may appear that the two solutions are "different." But the difference is a constant, and we know that antiderivatives are only unique up to addition of a constant. \Box

9. Find
$$\int \frac{2z\,dz}{\sqrt[3]{z^2+1}}$$
, both by substituting $u=z^2+1$ and $u=\sqrt[3]{z^2+1}$.

Solution. In the first substitution, du = 2z dz and the integral becomes

$$\int \frac{du}{\sqrt[3]{u}} = \int u^{-1/3} du = \frac{3}{2}u^{2/3} + C = \frac{3}{2}(z^2 + 1)^{2/3}$$

In the second, $u^3 = z^2 + 1$ and $3u^2 du = 2z dz$. The integral becomes

$$\int \frac{3u^2}{u} du = \int 3u^2 du = \frac{3}{2}u^3 + C = \frac{3}{2}(z^2 + 1)^{2/3} + C.$$

□The second one is a dirtier substitution, but the integration is cleaner.

Use the trigonometric identity

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

to find

10.
$$\int \sin^2 x \, dx$$

Solution. Using $\cos 2\alpha = 1 - 2\sin^2 \alpha$, we get

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

So

$$\int \sin^2 x \, dx = \int \left(\frac{1}{2} - \frac{1}{2}\cos 2x\right) \, dx$$
$$= \frac{x}{2} - \frac{1}{4}\sin 2x + C.$$

11. $\int \cos^2 x \, dx$

Solution. Using $\cos 2\alpha = 2\cos^2 \alpha - 1$, we get

$$\sin^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

So

$$\int \sin^2 x \, dx = \int \left(\frac{1}{2} + \frac{1}{2}\cos 2x\right) \, dx$$
$$= \frac{x}{2} + \frac{1}{4}\sin 2x + C.$$

$$\int \sec x \, dx$$

by multiplying the numerator and denominator by $\sec x + \tan x$.

Solution. We have

$$\int \sec x \, dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} \, dx$$
$$= \int \frac{\sec^2 x + \sec x \tan x}{\tan x + \sec x} \, dx$$

Now notice the numerator is the derivative of the denominator. So the substitution $u = \tan x + \sec x$ gives

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C.$$