$Pr\rho_{-}$	C-1	 	1 2 D

Test: Derivatives

Name: November 2014

1. Differentiate each of the following:

[8]

(a) $f(x) = \tan(3x-5)^3 - \sec^4 2x^5$

(1055x)

(b)
$$y = \frac{\cos^2 5x - \sqrt{\cot x^4}}{\sin[\tan(3x^2)]}$$

 $y = \left[\frac{1}{2} (1055x) (-\sin 5x (5)) - \frac{1}{2} (104x^{4}) (-\cos^{2}x^{4} (1/x^{2})) \right]$

2. (a) A bullet fired straight up from the moon's surface would reach a height of $s = 832t - 2.6t^2$ feet after t seconds. On Earth, in the absence of air, its height would be $s = 832t - 16t^2$ feet after t seconds. How much higher will the bullet rise on the moon than it would on earth?

しっつ

55 744 Feet Ligher on the Moon

Untitled.notebook November 24, 2014

[4]

[4]

[4]

- 6. A particle moves along a vertical line in such a way that at time t seconds after the start, the particle is located $s = 2t^3 - 21t^2 + 36t + 3$ metres from its starting position, where $t \ge 0$.
- (a) What is the velocity of the particle when the acceleration is equal to 18 m/s²?

$$5'=6t^2-42t+36$$
 $18=12t-42$
 $5''=12t-42$

(b) Determine the acceleration of the particle the instant it changes direction for the second time.

$$\frac{6t^2-42t+36=0}{6t^2-7t+6=0}$$

$$(t-6)(t-1)=0$$

$$t=6,1$$

(c) What is the total distance traveled by the particle over the first 24 seconds.

