

Slope-Intercept Form of the **Equation for a Linear Function**

LESSON FOCUS

Relate the graph of a linear function to its equation in slope-intercept form.

Make Connections

This graph shows a cyclist's journey where the distance is measured from her home.

What does the vertical intercept represent?

What does the slope of Ulntical Intercept (0,10)

distance from home he stanted

Slope:
$$\frac{\Delta y}{\Delta x} = \frac{\Delta d}{\Delta t} = ROC \frac{10km}{0.54} = 20 km/s$$

Finding Intercepts

- x intercept: a point where the graph crosses the x-axis.
- to find the x-intercept \Rightarrow let y = 0 & solve for x.
- y intercept: a point where the graph crosses the y-axis.
- to find the *y*-intercept \Rightarrow let x = 0 & solve for *y*.

Example: Find both intercepts given the line...

Find both the x ; y Intercepts:

$$\begin{array}{ll}
3y &= 9 - 4x \\
x - I_{\Lambda}t : (y = 0) \\
0 &= 9 - 4x \\
4x &= 9 \\
x &= 9 \\
x &= 9
\end{array}$$

$$\begin{array}{ll}
3y &= 9 \\
7 &= 3
\end{array}$$

$$\begin{array}{ll}
3y &= 9 \\
3y &= 3
\end{array}$$

$$\begin{array}{ll}
3y &= 9 \\
3y &= 3
\end{array}$$

$$\begin{array}{ll}
3y &= 9 \\
3y &= 3
\end{array}$$

$$\frac{2}{3}y - \frac{3}{4}x = -1$$

$$\frac{2}{3}y - \frac{3}{4}x = -1$$

$$\frac{2}{3}y - \frac{3}{4}x = -1$$

$$\frac{3}{3}x = -4$$

$$\frac{3}{3}x = -4$$

$$\frac{3}{3}x = -1$$

$$\frac{3}{3}x =$$

How do you know this is the graph of a linear function?
What does the slope of the graph represent?

$$M = \frac{50 - 20}{\frac{100 - 0}{20}} = \frac{30}{30} = 0.3$$

$$M = \frac{1}{2} - \frac{1}{2} = \frac{30}{20} = 0.3$$

Write an equation to describe this function. Verify that your equation is correct.

$$C = 20 + 0.30(n)$$

In Chapter 5, Lesson 5.6, we described a linear function in different ways. The linear function below represents the cost of a car rental.

Car Rental Costs

$$M = \frac{80-60}{100-0}$$

$$M = \frac{20}{20} = 0.2$$

An equation of the function is: C = 0.20d + 60

The number 0.20 is the rate of change, or the slope of the graph. This is the cost in dollars for each additional 1 km driven.

The number 60 is?

6.4 Slope-Intercept Form of the Equation for a Linear Function

In general, any linear function can be described in slope-intercept form.

Slope-Intercept Form of the Equation of a Linear Function

The equation of a linear function can be written in the form y = mx + b, where m is the slope of the line and b is its y-intercept.

Slope y-Intercept form

Slope y-Intercept

Thercept

6.4 Slope-Intercept Form of the Equation for a Linear Function

Example 1

Writing an Equation of a Linear Function Given Its Slope and y-Intercept

The graph of a linear function has slope $\frac{3}{5}$ and y-intercept -4.

Write an equation for this function.

$$y = Mx + b$$

$$y = 3x + (-4)$$

(5,-1) (10,2)

YOUR TURN...

1. The graph of a linear function has slope $-\frac{7}{3}$ and *y*-intercept 5. Write an equation for this function.

What is X-Intercept?

$$O = \frac{1}{3} \times \frac{7}{3} \times$$

YOUR TURN...

Write an equation to describe this function. Verify the equation.

y-Intercept:

Interplate

extrapolate

$$f = 5 - 3$$

$$y = 2(1) - 3$$

a)
$$y = \frac{1}{3} \times \frac{1}{7}$$
 $y = 4x + 8$
 $y = 4x + 8$

ex: Determine the slope and y-intercept of the following line.

EXAMPLE:

Determine the equation of the line that passes through the points (3, -4) & (0, 4)

$$M = \frac{y_2 - y_1}{x_2 - x_1} \qquad x = 0 \text{ at}$$

$$M = \frac{y_2 - y_1}{x_2 - x_1} \qquad x = 0 \text{ at}$$

$$M = \frac{y_2 - y_1}{x_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{x_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

$$M = \frac{y_2 - y_1}{y_2 - x_1} \qquad + \text{ As}$$

ex. Find equation of a line with slope 7 and x-Intercept-6.

M=7 (-6,0)

y = Mx + b y = 7x + b 0 = 7(-6) + b0 = -92 + b

Practice Problems...

Page 362 - 363 #4, 5, 8, 11, 12, 18, 19, 20

H22,23,24)
Dut at Beginning of
Class tomorrow if you want
Extra manks