## Wednesday, October 15/14 Physics 112/111



- 1. Return Rewrites Q: U1-S1
- 2. Formative Assessment Motion Problem P3 (Self-Assess)
- 3. Questions? -> Worksheet: Chapter 3 Motion Problems Worksheets: Freely Falling Bodies
- 4. ICA: U1-S2 (Motion Problems) Friday, Oct. 17/14- Topics
- 5. Test: Unit 1 -> Wed., Oct. 22 -> Topics
- 6. Unit 2 Dynamics

- P1 Tuesday, Oct. 14/14
- P3 Wednesday, Oct. 15/14

## **Formative Assessment - Motion Problem**

A tourist throws a rock downward with an initial speed of 8.0 m/s.

- a) What is the velocity of the rock after 4.0 s?
- b) What is the displacement of the rock after 4.0 s?

## ICA Topics for Unit 1 - Section 2 - Mathematical Analysis

- uniform motion: constant velocity (constant speed in one direction)

$$\overrightarrow{v} = \overrightarrow{\underline{d}}$$

- uniformly accelerated motion: changing speed and/or direction

Velocity vs. Time



slope 
$$\begin{cases} \vec{a} = \overrightarrow{v_f} - \overrightarrow{v_i} & \text{or} & \overrightarrow{v_f} = \overrightarrow{v_{i+1}} \vec{a} \end{cases}$$



derived 
$$\begin{cases} \overrightarrow{d} = \overrightarrow{v_i}t + \underline{1}\overrightarrow{at}^2 \\ \overrightarrow{v_f}^2 = \overrightarrow{v_i}^2 + 2\overrightarrow{ad} \end{cases}$$

- \* <u>Level 1</u> Be able to derive the last two equations given the first two equations.
- relationship between the directions of velocity and acceleration for objects speeding up or slowing down
- be able to interpret the "Ball Toss" graphs



- acceleration due to gravity is influenced by a planet's mass and distance from the planet's center.

\* 
$$\overrightarrow{g}_{Earth}$$
 = -9.80 m/s<sup>2</sup> if no location is specified

- freely falling bodies -> objects moving vertically up or down ->  $\overrightarrow{a}$  = -9.80 m/s<sup>2</sup> (when air resistance is ignored)
- objects that are dropped may have a  $\overrightarrow{v_i}$  that is zero, positive or negative

3