Check-Up....3

Given that (-2, 5) is a point on the graph of y = f(x), determine the coordinates of this point once the following transformations are applied...

(1)
$$y = 3f(x)$$

Algebras Strekth

A factor of 3

(2) $y = f\left(-\frac{1}{3}x\right)$

A torizontal strekth

By a factor 3

(3) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(4) $y - 5 = -2f\left(\frac{-2x+6}{2}\right) + 5$

(5) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(4) $y - 5 = -2f\left(\frac{-2x+6}{2}\right) + 5$

(5) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(4) $y - 5 = -2f\left(\frac{-2x+6}{2}\right) + 5$

(5) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(6) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(7) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(8) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(9) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(1) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(2) $y = f\left(-\frac{1}{3}x\right)$

(3) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(4) $y - 5 = -2f\left(\frac{-2x+6}{2}\right) + 5(-9,0)$

(5) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(6) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(7) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(8) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(9) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(1) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(2) $y = f\left(-\frac{1}{3}x\right)$

(3) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(4) $y - 5 = -2f\left(\frac{-2x+6}{2}\right) + 5(-9,0)$

(5) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(6) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(7) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(8) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(9) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(1) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(1) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(2) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(3) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(4) $y - 5 = -2f\left(\frac{-2x+6}{2}(x+3)\right) + 5(-9,0)$

(7) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(8) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(9) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(1) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(1) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(2) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(3) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(4) $y - 5 = -2f\left(\frac{-2x+6}{2}(x+5)\right] - 3(-9,0)$

(7) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(8) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(9) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(1) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(1) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(2) $y = 4f\left[\frac{1}{2}(x+5)\right] - 3(-9,0)$

(3) $y = 4f\left[\frac{1}{2}$

Summary of Transformations...

Transformations of the graphs of functions		
f(x) + c	shift $f(x)$ up c units	
f(x)- c	shift $f(x)$ down c units	
f(x+c)	shift $f(x)$ left c units	
f(x-c)	shift $f(x)$ right c units	١,
f(-x)	reflect $f(x)$ about the y-axis (Multiply X by	-1)
-f(x)	reflect $f(x)$ about the x-axis (Multiply y by	-1)
	When $0 < c < 1$ – vertical shrinking of $f(x)$	リソ
cf(x)	When $c > 1$ – vertical stretching of $f(x)$	
	Multiply the y values by c	
	When $0 < c < 1$ – horizontal stretching of $f(x)$	
f(cx)	When $c > 1$ – horizontal shrinking of $f(x)$	
	Divide the x values by c	

$$y = f(x) \longrightarrow y = af(b(x-c)) + d$$

$$x-values$$

Mapping Rule: $(x,y) \rightarrow (\frac{1}{b}x+c, ay+d)$

Important note for sketching...

Transformations should be applied in following order:

- 1. Reflections
- 2. Stretches
- 3. Translations

Remember....RST

The function y = f(x) is transformed to the function g(x) = -3f(4x - 16) - 10. Copy and complete the following statements by filling in the blanks.

The function f(x) is transformed to the function g(x) by a horizontal stretch about the by a factor of . It is vertically stretched about the by a symmetry by a symmetry factor of . It is reflected in the and about the symmetry and by then translated funits to the right and $\frac{1}{2}$ units down.

$$(x,y) \rightarrow (-3x+7, \frac{3}{4}y-3)$$

$$g(x) = \frac{3}{4}f(-\frac{1}{3}(x-7))-3$$

$$(x,y) \rightarrow (-\frac{2}{5}x-1, -\frac{7}{3}y+5)$$

$$g(x) = \frac{7}{7}f(-\frac{5}{2}(x+1))+5$$

Write the Equation of a Transformed Function Graph

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k. Explain your answer. y = g(x) y = f(x) y

Solution

The equation of the transformed function is g(x) = 2f(4(x + 7)) + 2.

How could you use the mapping $(x, y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$ to verify this equation?

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form

y = af(b(x - h)) + k. $R \Longrightarrow in x-qxis$

Practice Problems...

Pages 39 - 41

#3, 4, 6, 7, 8, 10, 13, 14

Inverse of a Relation

An inverse function is a second function which undoes the work of the first one.

1. Introduction

Suppose we have a function f that takes x to y, so that

$$f(x) = y$$
.

An inverse function, which we call f^{-1} , is another function that takes y back to x. Sc

$$f^{-1}(y) = x.$$

For f^{-1} to be an inverse of f, this needs to work for every x that f acts upon.

The -1 in $f^{-1}(x)$ does not represent an exponent; that is Not all functions have inverses. For example, let us see what happens if we try to find an inverse for $f(x) = x^2$.

$$f(-z) = 4$$
$$f(x) = 4$$

A function is said to be a one-to-one function if it never takes on the same value twice.

If a function is a one-to-one function then it will posses what is called an inverse function.

If f is a one-to-one function with domain A and range B. Then its inverse function, f⁻¹ has domain B and range A and is defined by

$$f^{-1}(y) = x \iff f(x) = y$$

for any y in B

L(x)=x,+5 15: A=3 p:xeb

domain of f^{-1} = range of f

range of $f^{-1} = \text{domain of } f$

In plain english....thex and y coordinates will just switch places

The inverse of a relation is found by interchanging the x-coordinates and y-coordinates of the ordered pairs of the relation. In other words, for every ordered pair (x, y) of a relation, there is an ordered pair (y, x) on the inverse of the relation. This means that the graphs of a relation and its inverse are reflections of each other in the line y = x.

$$(x, y) \rightarrow (y, x)$$

How does this play out graphically?

What if given the function algebraically?

Determine algebraically the equation of the inverse of each function. switch x } y!!!

a)
$$f(x) = 3x - 6$$

a)
$$f(x) = 3x - 6$$
 b) $f(x) = \frac{1}{2}x + 5$

c)
$$f(x) = \frac{1}{3}(x+12)$$
 d) $f(x) = \frac{8x+12}{4}$

d)
$$f(x) = \frac{8x + 12}{4}$$

$$\begin{cases} x = 3x - 6 \\ x$$

d)
$$f(x) = 8x+12$$
 $4x = 8y+12$
 $4x = 8y+12$
 $4x = 8y$
 $4 = 4x-12$
 $5(x) = 4x-12$

Determine the inverse for each of the following functions:

$$g(x) = -2 f\left(\frac{3}{3}(x-5)\right) + 7$$
If $(3,-1)$ is on $f(x)$ switch $x \leq y$.

What are it's coordinates on $g(x)$?

$$(x,y) \rightarrow \left(\frac{1}{3}x+5, -2y+7\right)$$

$$(\frac{3}{3}-1) \rightarrow \left(\frac{1}{3}(3)+5, -2(4)+7\right)$$

$$(x,y) \rightarrow (6, 9)$$

$$g'(x)$$

$$g'(x)$$

$$g'(x)$$

Test Tauesday
Practice Problems...

Pages 51 - 55 #2, 3, 5, 6, 8, 9, 11, 15, 18, 20, 21