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Infinite Sequences and Series

Finite Sequence: A sequence that eventually comes to an end.
A—

€X. fl..r2..r3..f4q.. fn

Infinite Sequence: A sequence that continues indefinitely.

~——
eX. 1.0, ., 15.0,....

Another example of an infinite sequence would be *é
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Let's look at the first few terms of this infinit¢ sequence... ~ O Y 9
1 2 3 ; 4  Asnincreases what is
S Iy = = happening to t, ?
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What would the graph of this sequence look like?
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This result is expressed mathematically as follows:

lim n_ i "The limit of _”__ as n approaches infinity is 1 ."
2n+1 2

n—so2n+1 2
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Infinite Series
o0
Y ap=ay+ay+az+..+a, +...
k=1

* The first thing to understand about an infinite series is that it is not a true
sum. For example we can add a finite number of 2's together and get a real
number, but if we add an infinite number of 2's together we do not get a real
number at all.

Partial Sum: The sum of a finite number of terms of a series.

————

Example: 2+0+2+4+6+8+10+ ...
~ D¢ partial sum = -2

L4 ow partial sum = -2
S04

= 2tov Y

3rd partial sum =0
4t partial sum = %L
etc.

Sometimes with an infinite series the sequence of partial sums, all of which are
true sums, approaches a finite limit S:

14
lim Zak = lim (al +a, + ...+an): S
n—>o0 n—>0
k=1
o If this is the case then we say that the series cgnvergesto S, and it would make
sense to define S as the sum of the infinite series.

o If the limit of the partial sums does not exist, then the series divergesand has
——
no sum.
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Example:
Which of the following series converge?

(2) 0.1 +0.01 +0.001 +0.0001 +.... (&) ver;zs

(b) 10 +20 + 30 + 40 + 50 + 60 + .. J‘\\N&r

___8:‘23

()l-1+1-1+1-1+1-.. oo.\ﬂ 5
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§3¢ 0
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Convergence of Geometric Series

rli<l.

o
k-1
Z ar will converge if and only if
k=1

If it does converge, the sum of the series will be % .

Why?

« Have a look at what happens if you take a fraction
that is less than 1 and raise it to large powers.

(s)~ 0 (§)~q

« Now use what you just found to look at the limit of the sum of a
geometric series as n approaches infinity
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Example:

Determine whether each of the following series converges. If it
converges, give the sum of the series.
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