Example: A box is shot up a frictionless 20° incline with an initial speed of 8.0 m/s. How high above the floor will the

box be when it stops? (3.3 m)

$$V_1 = 8.0 \text{ m/s}$$
 $V_1 = 8.0 \text{ m/s}$
 $V_1 = 8.0 \text{ m/s}$
 $V_1 = 8.0 \text{ m/s}$
 $V_2 = 0.7 \text{ m/s}$
 $V_3 = 0.7 \text{ m/s}$
 $V_4 = 7.7 \text{ m/s}$
 $V_4 = 7.7 \text{ m/s}$
 $V_5 = 0.7 \text{ m/s}$
 $V_7 = 0.7 \text{ m/s}$

Example:

An object is sliding along a frictionless table with an initial speed of 0.64 m/s. It strikes a coiled spring with a spring constant of 450 N/m and compresses it 7.8 cm. What was the

mass of the object?

$$E_{K,i} + E_{f,i} + E_{f,i} - E_{f,f} + E_{f,f}$$

$$E_{K,i} = E_{f,f}$$

$$A_{i} = K_{i} + K_{f,f}$$

$$M_{i} = K_{$$