Mechanical Waves

Each type of mechanical wave is defined in terms of the direction of the wave's motion as compared to the direction of the medium's motion.

1. Transverse Waves

The particles of the medium vibrate perpendicular to the direction of the wave's motion.

http://www.animatedscience.co.uk/blog/wp-content/uploads/focus waves/tl-wave.html

The particles of the medium vibrate parallel to the direction of the wave's motion.

http://www.animatedscience.co.uk/blog/wp-content/uploads/focus waves/tl-wave.html

Electromagnetic Waves

Electromagnetic waves consist of a varying <u>electric field</u>, E, and a varying <u>magnetic field</u>, B, at right angles to each other. The wave is a transverse wave.

http://www.animatedscience.co.uk/blog/wp-content/uploads/focus_waves/emwaves.html

There is a spectrum of electromagnetic waves.

All electromagnetic waves travel at the speed of light in a vacuum.

$$c = 3.00 \times 10^8 \text{ m/s}$$

(bystant

c -> speed of light in a vacuum

Parts of a Transverse Wave

*points

motion of wave

Parts of a Longitudinal Wave *regions

motion of wave

Attachments

P112 - Superposition.notebook

P111-112 Lab Resonance.notebook