OCTOBER 13, 2015

UNIT 2: POWERS AND EXPONENT LAWS

SECTION 2.1: POWERS OF 10 AND THE ZERO EXPONENT

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Numbers 1" OR "N1" which states:

"Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers."

What does THAT mean???

SCO N1 means that we will learn about the two parts of a power (the base, or "the big number", and the exponent, or "the little number"). We will show what a power means when we write it out using multiplication (ex: $3^2 = 3 \times 3$), and we will use patterns to prove, for example, that $3^0 = 1$. Finally, we will use what we know about powers to solve problems.

WHAT IS THE DIFFERENCE BETWEEN...

Base = 5

Base = 5

$$(-5)^2$$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 $(-5)^2$
 (-5)

WARM UP:

Evaluate each expression.

i) $\frac{8a}{3}^{2} = 3$ ii) $\frac{8a}{3}^{2} = 3$ iii) $\frac{8a}{3}^{2} = 3$ iii)

HOMEWORK QUESTIONS? (pages 55 / 56, #7 TO #9, #11 TO #13 and #16)

16. a)
$$3^{12}$$

$$= 531441$$
b) -7^{7}
 $= 1823543$
d) $-(-4)^{10}$
base = -4
$$= -1048576$$

DEALING WITH NEGATIVE BASES ON YOUR CALCULATOR:

Examples:

1.
$$(-2)^3$$

= $(-2)(-2)(-2)$
= -8

2.
$$(-2)^6$$

$$= (-2)(-2)(-2)(-2)(-2)(-2)$$

$$= 64$$

3.
$$(-4)^2$$
= $(-4)(-4)$
= 16

4.
$$(-4)^5$$

$$= (-4)(-4)(-4)(-4)(-4)$$

$$= -/024$$

* Negative base, even exponent = + answer * Negative base, odd exponent = - answer PLEASE TURN TO PAGE 54 IN MMS9. LOOK AT EXAMPLE 3 - EVALUATING EXPRESSIONS INVOLVING NEGATIVE SIGNS.

Identify the base in each of these powers, then evaluate the power.

1.
$$654$$
: Base = 5

Repeated Multiplication = $(5)(5)(5)(5)$

Standard Form = $(5)(5)(5)(5)$

What is the square root of 9? 3

What ARE the square roots of 9? ± 3

$$(+3)(+3) = 9$$

 $(-3)(-3) = 9$

What is $\sqrt{9}$?

": PRINCIPAL SQUARE ROOT; this means the POSITIVE square root only.

An example where **ONLY** the **PRINCIPAL** square root is appropriate:

A= 6h

The area of this pizza box is 144 cm²; what is the length of each side of the pizza box?

$$\sqrt{144}$$
= 12 cm (not -12 cm)

CONCEPT REINFORCEMENT:

MMS9:

PAGE 56: #14

PAGE 57: #20 & #21a