OCTOBER 7, 2015

UNIT 2: POWERS AND EXPONENT LAWS

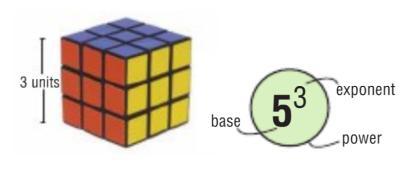
SECTION 2.1:WHAT IS A POWER?

M. MALTBY INGERSOLL
MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

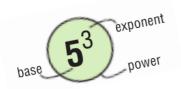
We will begin working on the Math 9 Specific Curriculum Outcome (SCO) "Numbers 1" OR "N1" which states:

"Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers."



What does THAT mean???

SCO N1 means that we will learn about the two parts of a power (the base, or "the big number", and the exponent, or "the little number"). We will show what a power means when we write it out using multiplication (ex: $3^2 = 3 \times 3$), and we will use patterns to prove, for example, that $3^0 = 1$. Finally, we will use what we know about powers to solve problems.


UNIT 2: POWERS AND EXPONENT LAWS

PLEASE TURN TO PAGE 50 IN MMS9.

UNIT 2: VOCABULARY

1. POWER:

an expression in the form of aⁿ, where a is the base and n is the exponent; it represents a product of equal factors.

ex.: $4 \times 4 \times 4 = 4^3$

2. SQUARE NUMBER: a number that can be written as a power with an integer base and an exponent of 2.

ex.: 49 = 7² (49 is a square number)

3. CUBE NUMBER: a number that can be written as a power with an integer base and an exponent of 3.

ex.: $8 = 2^3$

(8 is a cube number)

125 CAN BE WRITTEN SEVERAL WAYS:

1. Standard Form: 125

2. As repeated multiplication: 5 x 5 x 5

3. As a **POWER**: 5³

(What kind of a number is 125? Think of definition #3...)

cube number

PLEASE TURN TO PAGE 53 IN MMS9. LOOK AT EXAMPLE 1 - WRITING POWERS.

How would I write the following examples as POWERS?

1.
$$6 \times 6 \times 6 \times 6 \times 6 = 6$$

2.
$$8 \times 8 \times 8 \times 8 \times 8 \times 8 =$$

PLEASE TURN TO PAGE 54 IN MMS9. LOOK AT EXAMPLE 2 - EVALUATING POWERS.

How would I write the following examples as repeated multiplication and in standard form?

1.
$$2^6 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$$

= 64

2.
$$10^5 = |0 \cdot |0 \cdot |0 \cdot |0 \cdot |0 = |00 \cdot |00 \cdot |00 = |00 \cdot |00 \cdot |00 = |00 \cdot |00 \cdot |00 \cdot |00 \cdot |00 = |00 \cdot |00 \cdot$$

Let's talk about the ways in which we can use our calculators to evaluate powers.

There are 4 possible ways that I know of. Please let me know if there are others.)

- 1. xy
- 2. **y**^x
- 3.
- **4. x**■

Examples 1 and 2 on pages 53 and 54 showed powers with positive integer bases; however, a power can also be negative or have a base that is a negative integer.

A quick review of "double signs"...

What do each of the following actually mean?

$$1. + (+) = +$$

$$2. - (-) = 4$$

$$3. + (-) = -$$

WHAT IS THE DIFFERENCE BETWEEN...

$$(-5)^2$$
 $-(5^2)$ -5^2 $-(-5^2)^{5}$
= $(-5)(-5)$ = $-(5)(5)$ = $-(5)(5)$ = $-[-(5)(5)]$
= 25 = -25 = $-(-25)$
= 25

CONCEPT REINFORCEMENT:

MMS9:

PAGE 55: #7 <u>TO</u> #9 PAGE 56: #11 <u>TO</u> #13 and #16