Physics 112 Friday, October 16/15

http://mvhs-sherrard.weebly.com/

PROGRESS REPORTS

- 1. Explain That Stuff #4 Due Today
- 2. Freely Falling Bodies Continue
- 3. Worksheet Freely Falling Bodies HW
- 4. Topics Assignment: U1- S2+S3 (Earliest -> Tuesday Next Week)

•

Text - Page 132

Table 4.3 Pree-Fall Accelerations Due to Gravity on Earth

Location	Acceleration due to gravity (m/s²)	Altitude (m)	Distance from Earth's centre (km)
North Pole	9.8322	0 (sea level)	6357 •
equator	9.7805	0 (sea level)	6378
Mt. Everest (peak)	9.7647	8850	6387
Mariana Ocean Trench* (bottom)	9.8331	11 034 (below sea level)	6367
International Space Station*	9.0795	250 000	6628

^{*}These values are calculated.

Text - Page 133

Table 4.4 Free-Fall Accelerations Due to Gravity in the Solar System

Location	Acceleration due to gravity (m/s²)
Earth	- 9.81 (-9.80m)
Moon	- 1.64
Mars	~ 3.72
Jupiter	25.9

Ignoring <u>air resistance</u> (air friction), objects in free fall (rising <u>or</u> falling through air) have an acceleration of:

$$\overrightarrow{a} = -9.80 \text{ m/s}^2$$
 (Earth)

http://safeshare.tv/w/HseCPCrwwr

Objects in free fall or freely falling bodies are <u>always</u> accelerating - even when they may have zero velocity for an instant.

Worksheet - Objects in Free Fall

Topics - Assignment: U1-S2+S3

- 1. types of motion uniform motion and uniformly accelerated motion
 - definitions and examples
- 2. use the relationship between the directions of velocity and acceleration to determine the motion of an object
- 3. position-time graphs interpret graphs
 - identify type of motion
 - slope = velocity
 - determine if/when an object changes direction
- 4. velocity-time graphs interpret graphs
 - identify type of motion
 - slope = acceleration
 - area -> distance and displacement
 - be able to calculate average speed, average velocity and average acceleration
 - identify if/when an object changes direction
- 5. word problems follow checklist to obtain full value
 - uniform motion 1 formula
 - uniformly accelerated motion 4 formulas
 - quadratic formula
- 6. acceleration due to gravity influenced by mass of planet and distance from planet
 - symbol -> g
 - on Earth \overrightarrow{g} = -9.80 m/s²
 - assume no air resistance when
 working with freely falling bodies
 - interpret ball toss graphs

Physics 122 Friday, October 16/15

http://mvhs-sherrard.weebly.com/

PROGRESS REPORTS

- 1. Explain That Stuff #4 Due Today
- 2. Return -> Lab Experiment 10.2 Torques
- 3. Check -> Worksheet Static Torque #1
- 4. Worksheet Static Torque #2 HW
- 5. Next Assignment Torque and Relative Velocity

Science 10

Friday, October 16/15

PROGRESS REPORTS

- 1. Return Completed Assignments Balance Reactions
- 2. Check -> Worksheet Combustion Reactions
- 3. Worksheet Types of Reactions HW
- 4. Video Fireworks

P112 - C3 Motion Problems- Freefall.doc