APRIL 18, 2016

UNIT 7: SIMILARITY AND TRANSFORMATIONS

7.4: SIMILAR TRIANGLES

M. MALTBY INGERSOLL AND T. SULLIVAN MATH 9

WH	AT'S TH	E POIN	T OF TO	DAY'S	LESSON?
Cur		<mark>Outcome</mark>			Specific nd Space (
"Der	onstrate	an under	standing o	f similari	ty of polygo

A SOLUTION:

= 26.25/12.5

= 2.1

$$x = 7.14/2.1$$

$$x = 3.4$$

$$y = 11 \times 2.1$$

$$y = 23.1$$

ANOTHER SOLUTION:

$$\frac{26.25}{12.5} = \frac{7.14}{x} = \frac{y}{11}$$

$$\begin{array}{c}
26.25 &= 7.14 \\
12.5 & x
\end{array}$$

$$\begin{array}{c}
26.25x &= 89.25 \\
26.25 & 26.25
\end{array}$$

$$x = 3.4$$

HOMEWORK QUESTIONS?

(pages 329 / 330 / 331, #4 to #6, #8 to #11 & #20)

9a 10 be

9a 10 be

9. A
$$\underline{s}$$
. B:

16 \underline{s}

= $\frac{1}{3}$

= $\frac{1}{3}$

$$SF = \frac{5}{02}$$

.. A i, B are proportional.

O s
A si. C:
$$SF = \frac{5}{3}$$
 long $SF = \frac{5}{3}$
 $= \frac{1.5}{30}$ $= \frac{1}{2}$
 $\therefore A \text{ s. c are not}$
proportional.

$$B \stackrel{\text{s.c.}}{=} : SF = S$$

$$= 1.5$$

$$= 1.5$$

$$= 1.5$$

$$= 1.5$$

$$= 2$$

$$\therefore B \stackrel{\text{s. Cave mot}}{=} : B \stackrel{\text{s. Cave mot}}{=$$

HOMEWORK QUESTIONS?

(pages 329 / 330 / 331, #4 to #6, #8 to #11 & #20)

11. b)
$$\frac{3}{50} = 0.00064$$

= $\frac{18}{50} = 0.00048$ Km
= $\frac{18}{50} = \frac{18}{50}$ cm
= $\frac{35}{50}$ cm

Km → cm

 $= \times 10^5$

= X 100 000

1cm = 10 mm 10mm = 1 cm

0.000 48 Km X 100000 cm Km = 48 cm

HOMEWORK QUESTIONS?

(pages 329 / 330 / 331, #4 to #6, #8 to #11 & #20)

$$30. a) SF = \frac{S}{0} \times 100 \text{ cm/m}$$

$$= \frac{28}{7000}$$

$$= \frac{1}{350}$$

$$= 0.004$$

$$= 6000 \text{ cm}$$

$$= \frac{1}{1000}$$

$$= \frac{1}{1000}$$

$$= \frac{1}{1000}$$

$$= \frac{1}{1000} \times \frac{1}{1000}$$

Another option for b & c:

b)
$$\frac{1}{250} = \frac{24}{x}$$
 $\frac{1}{250} = \frac{7.6}{y}$ $\frac{1}{250} = \frac{7.6}{y}$ $\frac{1}{250} = \frac{7.6}{y}$ $\frac{1}{250} = \frac{1}{200}$ $\frac{1}{200} = \frac{1}{200}$ $\frac{$

PLEASE TURN TO PAGE 316 INMMS9.

This is a review of several properties you should already know about triangles.

Start Where You Are

What Should I Recall?

Suppose I have to solve this problem:

Determine the unknown measures of the angles and sides in ΔABC . The given measures are rounded to the nearest whole number.

I think of what I already know about triangles.

I see that AB and AC have the same hatch marks; this means the sides are equal.

$$AC = AB$$

So, AC = 5 cm

So, Δ ABC is isosceles.

An isosceles triangle has 2 equal angles that are formed where the equal sides intersect the third side.

I use 3 letters to describe an angle.

So,
$$\angle ACD = \angle ABD$$

= 37°

So,
$$BD = DC$$
 and $\angle ADB = 90^{\circ}$

I can use the Pythagorean Theorem in Δ ABD to calculate the length of BD.

$$AD^{2} + BD^{2} = AB^{2}$$

 $3^{2} + BD^{2} = 5^{2}$
 $9 + BD^{2} = 25$
 $9 - 9 + BD^{2} = 25 - 9$
 $BD^{2} = 16$
 $BD = \sqrt{16}$
 $BD = 4$

$$BD = 4 cm$$
So, $BC = 2 \times 4 cm$

$$= 8 cm$$

I know that the sum of the angles in a triangle is 180°.

So, I can calculate the measure of
$$\angle$$
 BAC.

$$\angle$$
BAC + \angle ACD + \angle ABD = 180°
 \angle BAC + 37° + 37° = 180°
 \angle BAC + 74° = 180°
 \angle BAC + 74° - 74° = 180° - 74°
 \angle BAC = 106°

My friend Janelle showed me a different way to calculate.

She recalled that the line $\ensuremath{\mathsf{AD}}$ is a line of symmetry for an isosceles triangle.

So, ΔABD is congruent to ΔACD .

This means that $\angle BAD = \angle CAD$

Janelle calculated the measure of \angle BAD in \triangle ABD.

$$\angle$$
 BAD + 37° + 90° = 180°
 \angle BAD + 127° = 180°
 \angle BAD + 127° - 127° = 180° - 127°
 \angle BAD = 53°
Then, \angle BAC = 2 × 53°
= 106°

Check

- 1. Calculate the measure of each angle.
 - a) ZACB

b) ∠GEF and ∠GFE

c) ∠HJK and ∠KHJ

SIMILAR TRIANGLES

TO IDENTIFY SIMILAR TRIANGLES:

* the measures of the pairs of corresponding angles must be EQUAL

OR

* the ratios of the lengths of the pairs of correspondingsides must be EQUAL; in other words, corresponding sides are proportional

MMS9, Page 344:

Properties of Similar Triangles

To identify that Δ PQR and Δ STU are similar, we only need to know that:

•
$$\angle P = \angle S$$
 and $\angle Q = \angle T$ and $\angle R = \angle U$; or

•
$$\frac{PQ}{ST} = \frac{QR}{TU} = \frac{PR}{SU}$$

ARE THESE TWO TRIANGLESIMILAR?

EXAMPLE - How you show PROOF OF SIMILARITY (AAA) in your work:

(NOTE: "AAA" = angle; angle; angle)

$$\angle A = \angle Q$$
 (GIVEN)

$$\angle B = \angle R$$
 (GIVEN)

$$\angle C = \angle P$$
 (GIVEN)

 $\bullet \triangle ABC \sim \triangle QRP (AAA)$

THIS IS CALLED A "SIMILARITY STATEMENT