APRIL 19, 2016

UNIT 7: SIMILARITY AND TRANSFORMATIONS

7.4: SIMILAR TRIANGLES

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?
We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 3" OR "SS3" which states:
"Demonstrate an understanding of similarity of polygons."

$$BD = 4 cm$$

So, $BC = 2 \times 4 cm$
= 8 cm

I know that the sum of the angles in a triangle is 180°.

So, I can calculate the measure of \angle BAC.

$$\angle$$
BAC + \angle ACD + \angle ABD = 180°
 \angle BAC + 37° + 37° = 180°
 \angle BAC + 74° = 180°
 \angle BAC + 74° - 74° = 180° - 74°
 \angle BAC = 106°

My friend Janelle showed me a different way to calculate.

She recalled that the line AD is a line of symmetry for an isosceles triangle.

So, \triangle ABD is congruent to \triangle ACD.

This means that $\angle BAD = \angle CAD$

Janelle calculated the measure of \angle BAD in \triangle ABD.

$$\angle$$
 BAD + 37° + 90° = 180°
 \angle BAD + 127° = 180°
 \angle BAD + 127° - 127° = 180° - 127°
 \angle BAD = 53°
Then, \angle BAC = 2 × 53°
= 106°

Check

1. Calculate the measure of each angle.

76°

a) ∠ACB

<u>/76°</u> B

b) ∠GEF and ∠GFE

c) ∠HJK and ∠KHJ

$$2C = |80 - (76 + 28) (SATT)$$

$$= |80 - |04|$$

$$= |760$$

$$BD = 4 \text{ cm}$$

So, $BC = 2 \times 4 \text{ cm}$
= 8 cm

I know that the sum of the angles in a triangle is 180°.

So, I can calculate the measure of \angle BAC.

$$\angle$$
BAC + \angle ACD + \angle ABD = 180°
 \angle BAC + 37° + 37° = 180°
 \angle BAC + 74° = 180°
 \angle BAC + 74° - 74° = 180° - 74°
 \angle BAC = 106°

My friend Janelle showed me a different way to calculate.

She recalled that the line AD is a line of symmetry for an isosceles triangle.

So, Δ ABD is congruent to Δ ACD.

This means that $\angle BAD = \angle CAD$

Janelle calculated the measure of \angle BAD in \triangle ABD.

$$\angle$$
BAD + 37° + 90° = 180°
 \angle BAD + 127° = 180°
 \angle BAD + 127° - 127° = 180° - 127°
 \angle BAD = 53°
Then, \angle BAC = 2 × 53°
= 106°

Check

- 1. Calculate the measure of each angle.
 - a) ZACB

b) ∠GEF and ∠GFE

c) ∠HJK and ∠KHJ

$$LE = 36^{\circ} (ITT)$$

 $LF = 180 - 2(36) (SATT)$
 $= 180 - 72$
 $= 108^{\circ}$

$$BD = 4 \text{ cm}$$

So, $BC = 2 \times 4 \text{ cm}$
= 8 cm

I know that the sum of the angles in a triangle is 180°.

So, I can calculate the measure of \angle BAC.

$$\angle$$
BAC + \angle ACD + \angle ABD = 180°
 \angle BAC + 37° + 37° = 180°
 \angle BAC + 74° = 180°
 \angle BAC + 74° - 74° = 180° - 74°
 \angle BAC = 106°

My friend Janelle showed me a different way to calculate.

She recalled that the line AD is a line of symmetry for an isosceles triangle.

So, Δ ABD is congruent to Δ ACD.

This means that $\angle BAD = \angle CAD$

Janelle calculated the measure of \angle BAD in \triangle ABD.

$$\angle$$
 BAD + 37° + 90° = 180°
 \angle BAD + 127° = 180°
 \angle BAD + 127° - 127° = 180° - 127°
 \angle BAD = 53°
Then, \angle BAC = 2 × 53°
= 106°

Check

- 1. Calculate the measure of each angle.
 - a) ∠ACB

b) ∠GEF and ∠GFE

c) \angle HJK and \angle KHJ

$$\angle H = \angle J = 180 - 36 (ITT)$$
 $= 144$
 $= 270$

SIMILAR TRIANGLES

TO IDENTIFY SIMILAR TRIANGLES:

* the measures of the pairs of corresponding angles must be EQUAL

OR

* the ratios of the lengths of the pairs of correspondingsides must be EQUAL; in other words, corresponding sides are proportional

MMS9, Page 344:

Properties of Similar Triangles

To identify that Δ PQR and Δ STU are similar, we only need to know that:

•
$$\angle P = \angle S$$
 and $\angle Q = \angle T$ and $\angle R = \angle U$; or

$$\cdot \frac{PQ}{ST} = \frac{QR}{TU} = \frac{PR}{SU}$$

ARE THESE TWO TRIANGLESIMILAR?

EXAMPLE - How you show PROOF OF SIMILARITY (AAA) in your work:

(NOTE: "AAA" = angle; angle; angle)

$$\angle A = \angle Q$$
 (GIVEN)

$$\angle B = \angle R$$
 (GIVEN)

$$\angle C = \angle P$$
 (GIVEN)

 $\bullet \triangle ABC \sim \triangle QRP (AAA)$

THIS IS CALLED A "SIMILARITY STATEMENT

ARE THESE TWO TRIANGLESIMILAR?

There are two angle theorems that you will need for your similar triangles proofs:

1. OPPOSITE ANGLES THEOREM (OAT):

opposite angles are EQUAL

Ex.:

$$\angle x = 50^{\circ} (OAT)$$

2. SUM OF THE ANGLES IN A TRIANGLE THEOREM (SATT) the sum of the angles in a triangle is 180.

Ex.: Calculate the unknown angle measure.

$$\angle x = |80 - (25 + 85) (5ATT)$$

$$= |80 - 110$$

$$= 70^{\circ}$$

3. ISOSCELES TRIANGLE THEOREM (ITT): The two angles that are opposite to the two congruent sides in an isosceles triangle are also congruent.

If: $\overline{AB} \cong \overline{AC}$ then: $\sphericalangle B \cong \sphericalangle C$

EXAMPLE: PROVE that the triangles in the diagram below are SIMILAR

$$<\mathbf{R} = <\mathbf{R} \ (\mathbf{OAT})$$

$$<$$
S = $<$ Q (SATT)

CONCEPT REINFORCEMENT:

MM59:

PAGE 349: #4 (should say, "Are the triangles

in each pair..."), #5 & #6 (no

proofs required - told the triangles

similar; #6b,c on pg 350)