APRIL 21, 2016

UNIT 7: SIMILARITY AND TRANSFORMATIONS

7.4: SIMILAR TRIANGLES

M. MALTBY INGERSOLL AND T. SULLIVAN MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?
We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 3" OR "SS3" which states:
"Demonstrate an understanding of similarity of polygons."

SIMILAR TRIANGLES

TO IDENTIFY SIMILAR TRIANGLES:

* the measures of the pairs of corresponding angles must be EQUAL

OR

* the ratios of the lengths of the pairs of correspondingsides must be EQUAL; in other words, corresponding sides are proportional

MMS9, Page 344:

Properties of Similar Triangles

To identify that Δ PQR and Δ STU are similar, we only need to know that:

•
$$\angle P = \angle S$$
 and $\angle Q = \angle T$ and $\angle R = \angle U$; or

•
$$\frac{PQ}{ST} = \frac{QR}{TU} = \frac{PR}{SU}$$

WARM UP: A flag pole casts a shadow 13.2 m long. At the SAME time, a woman with a height c 1.65 m casts a shadow 2.4 m long.

- a) Sketch and label a diagram. (It should contain a small triangle inside of a large triangle.)
- b)PROVE that the two triangles in your diagram are SIMILAR.
- c) What is the height of the flag pole to the nearest tenth of a metre?

c)
$$SF = \frac{5}{0}$$
 $h = 5.5(1.65)$
= $\frac{13.2}{2.4}$ = 9.1 m
= 5.5

HOMEWORK QUESTIONS?

(page 350, #9

EXAMPLE:

- a) Prove that these2 triangles aresimilar.
- b) Find the width of the lake to the nearest whole metre.

: DHJNNDPJQ(AAA)

$$SF = \frac{5}{0}$$
= $\frac{515}{210}$
= $\frac{515}{2.4524}$

$$W = 2.45a4(230)$$
 $= 564.052$
 $= 564m$

OR

$$\frac{\omega}{230} = \frac{515}{210}$$

$$210W = 119 450$$

$$W = 564.0476$$

$$W = 564M$$

EXAMPLE:

- a) Prove that these2 triangles aresimilar.
- b) Find the width of the river to the nearest tenth of a metre.

a)
$$\angle C = \angle C (0AT)$$
 $\forall w \text{ (width)} = ?$
 $\angle B = \angle D (SATT)$
 B

D

.. △ABCN△ EDC (AAA)

b)
$$\frac{28.9}{73.2} \Rightarrow \frac{3}{98.3}$$

 $2840.87 = 73.2 \omega$
 $38.8097 = \omega$
 $38.8m = \omega$

OR

$$5F = \frac{5}{0}$$
 $W = \frac{98.3}{2.5329}$
 $= \frac{73.2}{28.9}$
 $= 38.8093$
 $= 3.5329$
 $= 38.8093$

CONCEPT REINFORCEMENT:

MM59:

PAGE 350: #7, #10 and #11 (proofs req'd)

PAGE 351: #12 and #13 (proofs req'd)