APRIL 25, 2016

UNIT 7: SIMILARITY AND TRANSFORMATIONS

7.3: SIMILAR POLYGONS

M. MALTBY INGERSOLL AND T. SULLIVAN MATH 9

WHAT'S T	HE POINT OF TO	DDAY'S LESSON?
Curriculum		the Math 9 Specific 'Shape and Space 3"
"Demonstrat	e an understanding o	of similarity of polygons.'

HOMEWORK QUESTIONS?

(page 351, #14 & #15 ; page 352, #1 & #7 ; page 377, #3 ; page 378, #9, #10 & #11)

.. DABCND DEC ND FGC (AAA)

$$\frac{x}{16} = \frac{12}{45}$$

$$\frac{x}{16} = \frac{27}{45}$$

$$45x = 192$$

$$45y = 432$$

$$x = 4.26$$

$$x = 4.3m$$

HOMEWORK QUESTIONS?

(page 351, #14 & #15; page 352, #1 & #7; page 377, #3; page 378, #9, #10 & #11)

a)
$$SF = \frac{S}{0}$$

= $\frac{180}{270}$
= $\frac{2}{2}$

$$SF = \frac{5}{92} \div 46$$

$$= \frac{62}{138} \div 46$$

$$= \frac{2}{3}$$

$$\frac{48}{1} = 96 \, \text{cm}$$

HOMEWORK QUESTIONS?

(page 351, #14 & #15; page 352, #1 & #7; page 377, #3; page 378, #9, #10 & #11)

$$\frac{d}{d8} = \frac{58}{35}$$

$$35 d = 1624$$

$$d = 46.4 m$$

Activity

(Label your second polygonIJKLMNOP counterclockwise from the top left corner.)

SIMILAR POLYGONS

TO IDENTIFY SIMILAR POLYGONS:

* the measures of corresponding anglesmust be EQUAL

** AND **

* the ratios of the lengths of the correspondingsides must be EQUAL; in other words, corresponding sides are proportional

EXAMPLE: PROVE that quadrilateral ABCD is SIMILAR TOquadrilateral PQRS.

∴ quadrilateral ABCD ~ quadrilateral PQRS

EXAMPLE:

Identify pairs of similar rectangles. Justify the answer.

We are told that these shapes are rectangles. All identify pairs of similar rectangles. Justify the answer.

angles in a rectangle measure 90; therefore, we do not have to "prove" anything about the angles it is "given" that these shapes are rectangles.

We also know that rectangles have two pairs of congruent sides; therefore, the only thing we need to "prove" are the ratios of two pairs of corresponding sides are equal.

(1)
$$\vec{\epsilon}$$
, (2): $\frac{AB}{HG} = \frac{BC}{FG}$
 $\frac{8.5}{8.4} = \frac{2.5}{2.4}$

1.0119 + 1. 0416

... (1) ε, (2) are NOT similar.

(1)
$$\vec{\epsilon}$$
, (3): $\frac{AB}{NM} = \frac{BC}{KM}$
 $\frac{8.5}{5.25} = \frac{2.5}{1.5}$
1.6191 \pm 1.6
1.60 $\vec{\epsilon}$, (3) are NOT similar.

: rectangle EFGH N rectangle JKMN

EXAMPLE 2:

These 2 octagonal garden plots are **SIMILAR**. Calculate

the length of GH and NP.

$$\frac{GH}{PQ} = \frac{AB}{IJ}$$

$$\frac{x}{32.4} = \frac{5.4}{8.1}$$

$$8.1x = 174.96$$

$$x = 21.6 \text{ m}$$

$$\frac{NP}{FG} = \frac{IJ}{AB}$$
 $\frac{y}{27.0} = \frac{8.1}{5.4}$
 $5.4y = 218.7$
 $y = 40.5 \text{ m}$

CONCEPT REINFORCEMENT:

MM59:

PAGE 341: #4, #5 & #9

PAGE 342: #13