APRIL 4, 2016

UNIT 6: LINEAR RELATIONS

4.3: ANOTHER FORM OF THE EQUATION FOR A LINEAR RELATION

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Patterns and Relations 2" OR "PR2" which states:

"Graph linear relations, analyze the graph and interpolate or extrapolate to solve problems."

HOMEWORK QUESTIONS? (page 178, #4 TO #7)

Equation? y = 3

X	У
O	3
	3
Z	3
3	3
7	3

The graph of the equation y = b, where b is a constant, is a horizontal line. Every point on the graph has a y-coordinate of b.

$$y = b$$

$$0$$

Equation? $\chi = 3$

X	У
3	O
3	-
3	Z
3	3
3	7

The graph of the equation x = a, where a is a constant, is a vertical line. Every point on the graph has an x-coordinate of a.

EQUATIONS FOR LINEAR RELATIONS:

$$y = mx + b$$

$$y = b$$

$$\mathbf{x} = \mathbf{a}$$

Example 1

Graphing and Describing Horizontal and Vertical Lines

For each equation below:

- i) Graph the equation.
- ii) Describe the graph.

a)
$$x = -4$$

Verhical

Horizontal

b)
$$y + 2 = 0$$

Vertical

c)
$$2x = 5$$

$$x = \frac{5}{2}$$

Example 2

Graphing an Equation in the Form ax + by = c

For the equation 3x - 2y = 6:

- a) Make a table of values for x = -4, 0, and 4.
- b) Graph the equation.

CONCEPT REINFORCEMENT:

MMS9:

PAGE 179: #8, #11, #12 and #13(a)

NOTE: MID-UNIT QUIZ WED.!!!