In Summary

Key Idea

 A single error in reasoning will break down the logical argument of a deductive proof. This will result in an invalid conclusion, or a conclusion that is not supported by the proof.

Need to Know

- Division by zero always creates an error in a proof, leading to an invalid conclusion.
- Circular reasoning must be avoided. Be careful not to assume a result that follows from what you are trying to prove.
- The reason you are writing a proof is so that others can read and understand it. After you write a proof, have someone else who has not seen your proof read it. If this person gets confused, your proof may need to be clarified.

HOMEWORK... p. 42: #1 - 10 (omit #8)

3. Mickey says he can prove that 2 = 0. Here is his proof.

Let both
$$a$$
 and b be equal to 1.

 $a = b$
 $a^2 = b^2$
 $a^2 - b^2 = 0$
 $a = b$

Transitive property

Squaring both sides

Subtracting b^2 from both sides

Factoring a difference of squares

 $a = b$

Transitive property

Squaring both sides

Factoring a difference of squares

 $a = b$

Transitive property

Subtracting b^2 from both sides

Factoring a difference of squares

 $a = b$

Transitive property

Subtracting b^2 from both sides

Factoring a difference of squares

 $a = b$

Transitive property

Subtracting b^2 from both sides

Factoring a difference of squares

 $a = b$

Transitive property

Subtracting b^2 from both sides

Factoring a difference of squares

 $a = b$

Simplifying

Substitution

 $a = b$

Substitution

Explain whether each statement in Mickey's proof is valid.

4. Noreen claims she has proved that 32.5 = 31.5.

Is Noreen's proof valid? Explain.

singingbanana · 175 videos

Subscribe 59,873

289,874

1,368 🖣 29

9. Brittney said she could prove that a strip of paper has only one side. She took a strip of paper, twisted it once, and taped the ends together. Then she handed her friend Amber a pencil, and asked Amber to start at any point and draw a line along the centre of the paper without lifting the pencil. Does a strip of paper have only one side? Why or why not?

10. Brenda was asked to solve this problem:

Three people enjoyed a meal at a Thai restaurant. The waiter brought a bill for \$30. Each person at the table paid \$10.

Later the manager realized that the bill should have been for only \$25, so she sent the waiter back to the table with \$5.

The waiter could not figure out how to divide \$5 three ways, so he gave each person \$1 and kept \$2 for himself.

Each of the three people paid \$9 for the meal.

$$9 \cdot 3 = 27$$

The waiter kept \$2.

$$27 + 2 = 29 25$$

The state of the s

What happened to the other dollar?

Does the question make sense? How should Brenda answer it?

1.6

Reasoning to Solve Problems

GOAL

Solve problems using inductive or deductive reasoning.

EXPLORE...

• Suppose that you are lost in the woods for hours and come upon a cabin. In the cabin, you find a lantern, a candle, a wood stove with wood in it, and a match. What do you light first?

SAMPLE ANSWER

I would light the match first. If I didn't, I couldn't light any of the other items. I would light the candle next, since it would stay lit for longer than the match and would allow me to light the other two items. Also, it's less likely that I would make an error or fail when lighting the candle. The lantern and the stove would be more difficult to light.

INVESTIGATE the Math

Emma was given this math trick:

- · Choose a number.
- · Multiply by 6.
- Add 4.
- · Divide by 2.
- · Subtract 2.

Emma was asked to use inductive reasoning to make a conjecture about the relationship between the starting and ending numbers, and then use deductive reasoning to prove that her conjecture is always true. Here is her response to the problem:

Inductive reasoning:

#	×6	+4	÷2	-2
5	30	34	17	15
-3	-18	-14	-7	-9
0	0	4	2	0
24	144	148	74	72

I followed the steps to work through four examples.

Conjecture: It is 3 times.

Deductive reasoning:

I chose d.

Then I multiplied, added, divided, and subtracted to get an expression.

It simplified to 3d.

? How can Emma's communication about her reasoning be improved?

- A. With a partner, explain why Emma might have chosen the values she did.
- **B.** What details are missing from the deductive reasoning Emma used to arrive at the expression 3*d*?
- C. Improve Emma's conjecture, justifications, and explanations.

Answers

- A. Emma might have chosen the four values because each value represents a different attribute. One value is positive, another is negative, another is zero, and the last is a larger number. With this variety, Emma might have thought that she had sampled sufficiently from the range of possible values.
- B. The explanation does not include reasons for each step, nor does it show what each step looks like. It provides only a summary.
- **C.** Conjecture: The resulting value will always be three times the starting value. Justification and explanation:

Let d represent any number.	d
Multiply by 6.	6d
Add 4.	6d + 4
Divide by 2.	$\frac{(6d+4)}{2} = 3d+2$
Subtract 2.	3d + 2 - 2 = 3d
The resulting value is three times the starting value.	3 <i>d</i>

WARM UP PROBLEM: Need 4 gallons using only a 3 and 5 gallon jugs???

SOLUTIONS...

Sarahis

there is an alternate way to solve this:

- 1. fill the 3 gallon jug
- 2. pour that 3 gallons into the 5 gallon jug
- 3. refill the 3 gallon jug
- 4. fill the 5 gallon jug to the top, leaving 1 gallon in the 3 gallon jug
- 5. empty the 5 gallon jug
- 6. pour the 1 gallon from the 3 gallon jug into the 5 gallon jug
- 7. refill the 3 gallon jug
- 8. pour that 3 gallons into the 5 gallon jug which already has 1 gallon in it for a total of 4 gallons.

Die Hard Solution

Step 1. Fill 5 gallon jug

Step 2. Pour 5 gallon jug into 3 gallon jug, leaving 2 remaining gallons in 5 gallon jug.

Step 3. Empty 3 gallon jug.

Step 4. Pour 2 gallons from 5 gallon jug into 3 gallon jug, leaving 1 gallon of empty space.

Step 5. Refill 5 gallon jug.

Step 6. Pour water from 5 gallon jug into 3 gallon jug, which already has 2 gallons in it, and only 1 gallon of empty space, leaving exactly 4 gallons in the 5 gallon jug.

13

In Summary

Key Idea

Inductive and deductive reasoning are useful in problem solving.

Need to Know

- Inductive reasoning involves solving a simpler problem, observing patterns, and drawing a logical conclusion from your observations to solve the original problem.
- Deductive reasoning involves using known facts or assumptions to develop an argument, which is then used to draw a logical conclusion and solve the problem.

HOMEWORK...

p. 48: #10 - 16 (omit 14)

p. 55: #5, 7, 10