Answers

Solving Systems of Equations by

7.8.

$$3Kx - 7y - 10 = 0$$

$$-7y = -3kx + 10$$

$$y = -3kx - 100$$

$$y = -3kx - 100$$

$$M = -2$$

$$M = -2$$

$$M = -3$$

$$3K =$$

7.4 Using a Substitution Strategy to Solve a System of Linear Equations

Solving Systems of Equations

There are a number of different ways in which to solve systems of equations. The second method we are going to look at is called *substitution*.

Rules for Substitution as a method for solving a system of equations.

- If there are two variables, there must be two equations; three variables, three equations, etc.
- One of the equations can easily be substituted into the other equation to solve for one variable.

Steps when solving systems of equations using substitution

$$\begin{array}{ccc}
 & -8x + y = 0 & \emptyset \\
 & x + 2y + 17 = 0 & \bigcirc
\end{array}$$

Solve the follwoing systems of equations using substitution

$$y - 3x = 5 \text{ D}$$

$$y + x = 3 \text{ D}$$

$$Step 1 \Rightarrow \text{Isolate } y \text{ in } D$$

$$y - 3x = 5$$

$$y = 3x + 5$$

$$y = 3(-1) + 5$$

$$y = 3 + 5x^{2}$$

$$y = 3 + 5x^{2}$$

$$y = -3 +$$

Pg 425

Period 1 #4a,b

Period2 #4 a-d

If you need "Unother example"
Pg 418