Untitled.notebook **December 20, 2016**

Grab a calculator & finish...

p. 568: #4,5/6,10, 11

- 5. Susie purchased a limited edition print of a Robert Bateman painting for \$7800. Bateman's prints appreciate, on average, 1.5% annually.
 - a) How long will Susie need to keep the print until its value exceeds \$10 000?

22 = 48 yents 1.5 b) About how long will Susie need to keep the print until its value has

Untitled.notebook December 20, 2016

10. A company has spent \$70 000 for car rentals over 2 years. The company's financial officer wants to determine if the company should continue to rent or if it should buy or lease two vehicles instead.

- A 2-year lease for a car requires a down payment of \$2000 and monthly payments of \$770.
- a) Determine the costs of each option: renting, buying, and leasing.
- Recommend a course of action for the company. Justify your recommendation.

Down => 57-06 32000 8,05 x 32000 \$1600

Untitled.notebook December 20, 2016

6. Jake and Archie are looking for places to live.

Jake decides to rent a house for \$1400 per month.

 Archie buys a house for \$189 900, with a down payment of 10%. The bank has offered Archie a 20-year mortgage for the remainder of the cost, at 4% compounded semi-annually, with payments every two weeks.

Jake and Archie both move after 5 years. Archie's house has depreciated by 2% per year. Compare Jake's and Archie's housing costs.

Down = 18 990

5 years

Ready for the test??? REVIEW Time...

Chapter 8: Investing Money

- mid chapter review p. 481
- chp review p. 507
- chp self test p. 506

Chapter 9: Borrowing Money

- mid chapter review p. 539
- chp review p. 573
- chp self test p. 572

hus

Cumulative Review...Chp. 8/9 p. 576

Simple Interest

$$I = \operatorname{Pr} t$$

$$A = P + I$$

$$A = P + \operatorname{Pr} t$$

$$A = P(1 + rt)$$

Compound Interest

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

$$I = A - P$$

Present Value

$$P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}}$$

Rule of 72 and Rate of Return

Doubling Time =
$$\frac{72}{Rate}$$

$$ROR = \frac{\$ earn}{\$ invested} \times 100\%$$

TVM-Solver