

Laws Of Exponents

Law #1: Product Rule

$$b^m \times b^n = b^{m+n}$$

- when multiplying powers with the **<u>same</u>** base you add the exponents

Examples:

$$5^3 \times 5^6 = 5^{3+6} = 5^9$$

$$(z^{6})(z^{4}) = z^{6+4} = z^{10}$$

Exercise:

Simplify the following using the laws of exponents

a)
$$3^2 \times 3^4$$

d)
$$p \times p^3 \times p^2$$

e)
$$(2x^3)(4x^2)$$

f)
$$(3z^3)(6z^{12})$$

Law #2: Quotient Rule

$$\mathbf{b}^{\mathbf{m}} \div \mathbf{b}^{\mathbf{n}} = \mathbf{b}^{\mathbf{m}-\mathbf{n}}$$

- when dividing powers with the <u>same</u> base you subtract the exponents 3x2 = 6 2x3 = 6

Examples:

$$7^5 \div 7^2 = 7^{5-2} = 7^3$$

Exercise:

Simplify the following using exponent laws

a)
$$5^{23} \div 5^{12}$$

b)
$$\frac{x^{34}}{x^{19}} = \chi^{15}$$

c)
$$c^3 \div e^2$$

d)
$$\frac{12x^3}{4x}$$

e)
$$\frac{25c^{30}}{5c^{23}}$$
 $5c^7$

Law #3: Power Rule

when raising a power to another power...MULTIPLY the exponents."

$$(b^m)^n = b^{mn}$$

Law #4: Power of Product

when a product is raised to a power, each of the factors are raised to the power."

$$(ab)^m = a^m b^m$$

- when brackets are involved you must multiply the exponents

Examples:

$$(5^3)^5 = 5^{(3)(5)} = 5^{15}$$

$$(m^8)^4 = m^{(8)(4)} = m^{32}$$

$$(e^2f)^3 = e^{(2x^3)}f^{(1x^3)} = e^6f^3$$

Exercise:

Simplify the following using Laws of Exponents

a) $(m^3)^4$

b) $(x^2y^4)^3$

c) $(2d^3)^3$

d) $(2m^4n)^2(m^3n^2)$

Law #5: Power of Quotient Rule

when a quotient is raised to a power, both the divisor and the dividend are raised to the power."

$$\left(\frac{a}{b}\right)^n = \left(\frac{a}{b^n}\right)$$

Examples:

$$\left(\frac{2^{5}}{3^{5}}\right)^{5} = \left(\frac{2^{5}}{3^{5}}\right)$$

Law #6: Zero Rule

$$b^0 = 1$$

- any power raised to the exponent 0 (zero) is equal to 1

Laws of Exponents

Product of powers law: $a^m \cdot a^n = a^{m+n}$

Quotient of powers law: $\frac{a^m}{a^n} = a^{m-n}$

Power of a power law: $(a^m)^n = a^{mn}$

Write as a single power

a)
$$3^2 \cdot 3^5 = 3^7 = 218$$

b)
$$(4^2)^5 = 4^{16}$$

c)
$$(-5)^{10}$$
 \div $(-5)^{8}$ $=$ $(-5)^{2}$

4.4 Fractional Exponents and Radicals

$$\frac{6}{3} = \frac{3}{1}$$
 $\frac{2}{3} = \frac{1}{16}$
 $\frac{2}{3} = \frac{1}{16}$
 $\frac{1}{3} = \frac{1}{16}$

Answers to Laws of Exponents Review

1) 2⁶

2) $\frac{1}{2^8}$

3) $\frac{1}{2^2}$

4) 2²⁷

8) $\frac{m^9}{4n^4}$

5) $\frac{1}{8x^8}$

 $\frac{4}{v^3x^4}$

 n^2 10) $\frac{8}{2}$

1. $(6m^3)(5m^3)$ 2. $(3n)(4n^3)$ 3. $(6x^3y^2)(yx^2)$ 4. $(2x^4)^2$ 5. $(2x^4)^2$ 6. $(4x^3y^2)(2x^2y^5)^3$ 6. $(4x^3y^2)(2x^2y^5)^3$ 7. $(4x^3y^2)(2x^2y^5)^3$ 3. $(6x^3y^2)(yx^2)$ 4. $(2x^4)^2$ 6. $(2x^4)^2$ 7. $(2x^2y^5)^3$ 8. $(2x^4)^2$ 9. $(2x^2y^5)^3$ 1. $(2x^4)^2$ 2. $(2x^2y^3)^3$ 2. $(2x^4)^2$ 2. $(2x^4)^2$