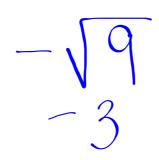

2. Evaluate each radical. Justify your answer.

- a) $\sqrt{36} = 6$ b) $\sqrt[3]{8}$ 2 c) $\sqrt[4]{10000} \sqrt[7]{0}$ d) $\sqrt[5]{-32}$ = -2
- e) $\sqrt[3]{\frac{27}{125}}$ f) $\sqrt{2.25}$ g) $\sqrt[3]{0.125}$ h) $\sqrt[4]{625}$

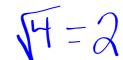


 $-2 \times -2 \times -2 = -8$

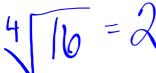
4.1 Math Lab: Estimating Roots

4. a) What happens when you attempt to determine the square root of a number such as –4? Explain the result.

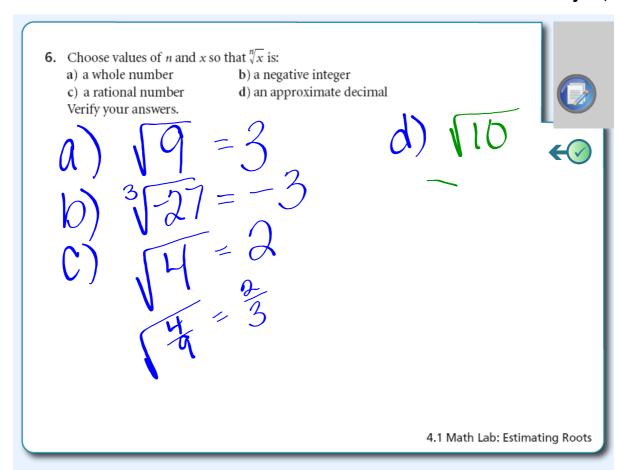
- b) For which other radical indices do you get the same result with a negative radicand, as in part a?
- c) When a radicand is negative:
 - i) Which types of radicals can be evaluated or estimated?
 - ii) Which types of radicals cannot be evaluated or estimated?

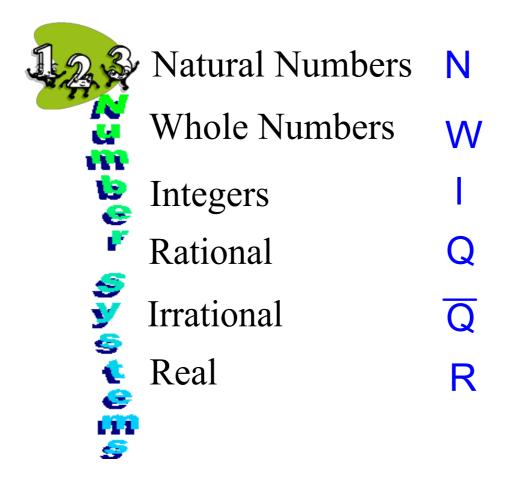


4.1 Math Lab: Estimating Roots


- 5. For each number below, write an equivalent form as:
 - i) a square root
- ii) a cube root
- iii) a fourth root

- a) 2
- b) 3 c) 4
- d) 10
- e) 0.9
- f) 0.2





4.1 Math Lab: Estimating Roots

Natural Numbers: $[x, 1, 2, 3]^{2,3}$ etc

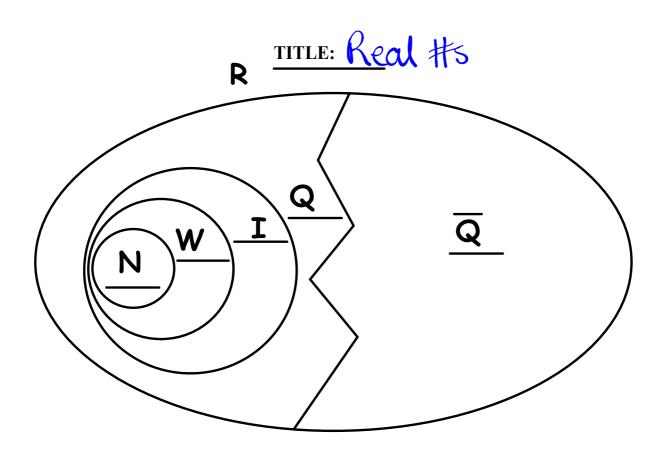
Whole Numbers: Counting numbers including zero. Ex. 0, 1, 2, 3, etc (x, 0, 1, 2, 3).

Integers: Are all positive and negative whole numbers. (Remember zero is neither negative or positive)

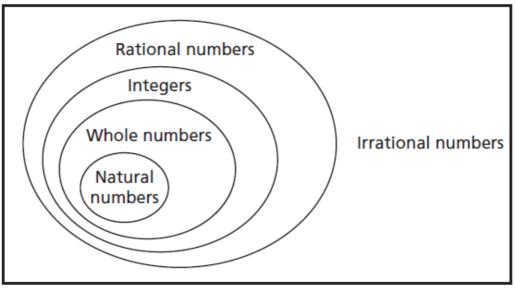
> Ex:3,2,1,0,-1-2,-3... Ex. -3,-2,-1,0,1,2,3...

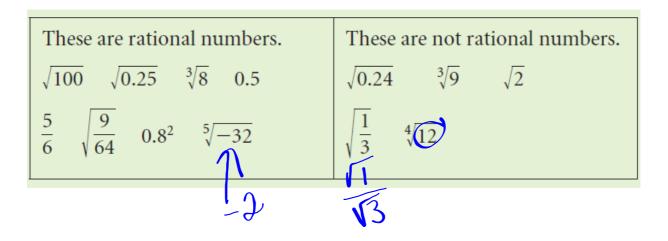
Rational Numbers: All whole numbers, fractions, mixed numbers, decimals and their negatives The decimal must repeat or terminate also.

Ex: 1/3, 44 376/4 \ 1/10

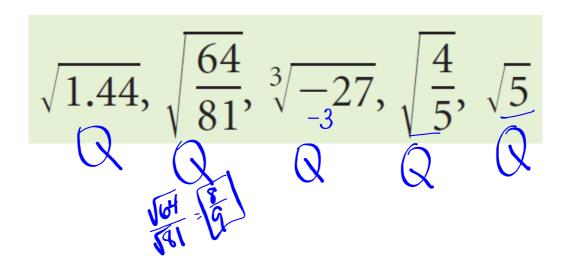

Irrational Numbers: Decimals that never terminate or repeat.

Ex: $\sqrt{2}$


Real Numbers: All rational and irrational numbers are real


numbers

Ex: All possible numbers



Real Numbers

WHICH OF THE FOLLOWING RADICALS ARE: **RATIONAL? IRRATIONAL?**

Exercise

Complete the table 23 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3							
	N	W		Q	Q'	R	
5	$\sqrt{}$			$\sqrt{}$		V	
-2			V	\mathcal{V}			
3				v /		V ,	
4							
-1.3				V		V/,	
√ 7					$\sqrt{}$		
√9.5					\bigvee	V	

EXAMPLE:

Order the following radicals from least to greatest.

$$\frac{3}{\sqrt{13}}$$
, $\sqrt{18}$, $\sqrt{9}$, $\frac{4}{\sqrt{27}}$, $\sqrt{3}$, -5 , $\sqrt{3}$, $\sqrt{5}$,

YOU TRY!

Order the following radicals from least to greatest.

$$\sqrt{2}$$
, $\sqrt[3]{-2}$, $\sqrt[3]{6}$, $\sqrt{11}$, $\sqrt[4]{30}$

Check your understanding worksheet.

Do half from each question!

Warm-up 'Quiz' tomorrow!!! Practice radicals, estimation, ordering, number systems!

Check Your Understanding

-	TT .		1 1 , 1 ,
1	l ce menta	l math to cal	lculate each root.
	. Use mema	i iliani w ca	icuiaic cacii iooi.

a)
$$\sqrt{36}$$

b)
$$\sqrt{144}$$

c)
$$\sqrt[3]{27}$$

c)
$$\sqrt[3]{27}$$
 d) $\sqrt[3]{-64}$

2. Use mental math to calculate each root.

a)
$$\sqrt{3 \cdot 3 \cdot 3 \cdot 3}$$
 b) $\sqrt{2^{12}}$

b)
$$\sqrt{2^{12}}$$

c)
$$\sqrt[3]{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}$$
 d) $\sqrt[3]{9^6}$

- 3. a) A square has an area of 196 cm². Calculate its side length.
 - b) A cube has a volume of 216 cm³. Calculate its edge length.
- **4.** Use a calculator to calculate each square root. Write the answer to 2 decimal places where necessary.

a)
$$\sqrt{289}$$

b)
$$\sqrt{3.24}$$

b)
$$\sqrt{3.24}$$
 c) $\sqrt{1000}$

d)
$$\sqrt{\frac{3}{5}}$$

Check Your Understanding

1. Write each expression as a power.

d)
$$(-5)(-5)(-5)$$

2. Write each power as repeated multiplication.

b)
$$(-17)^5$$

c)
$$100^3$$

3. Use mental math to calculate each power.

b)
$$2^4$$

c)
$$(-5)^2$$

$$\mathbf{d})(-4)^3$$

4. Use a calculator to calculate each power.

c)
$$(-24)^4$$

$$(-8)^9$$

5. A shelf contains 8 boxes. Each box contains 8 cartons. Each carton contains 8 pens. Write the number of pens as a power. How many pens are on the shelf?