FEBRUARY 8, 2016

UNIT 5: LINEAR EQUATIONS AND INEQUALITIES

SECTION 6.1: SOLVING EQUATIONS BY USING INVERSE OPERATIONS

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will begin working on the Math 9 Specific Curriculum Outcome (SCO) "Patterns and Relations 3" OR "PR3" which states:

"Model and solve problems using linear equations in a variety of forms (ax = b; ax + b = c; ax + b = cx + d; a(bx + c) = d(ex + f) etc.) concretely, pictorially and symbolically where a, b, c, d, e and f are rational numbers."

What does THAT mean???

SCO PR3 means ALGEBRA!!!

What's the difference between an expression and an equation?

EXPRESSION: 5x + 2 (Polynomial / Binomial)

EQUATION5x + 2 = -8(Algebra)

Please turn to page 264 in *Math Makes Sense 9 (MMS9*).

"What You'll Learn"
"Why It's Important"

And now for the nuts and bolts of it all...

The top row of the arrow diagram below shows the steps to remove a flat tire on a car. What steps are needed to put on a new tire?

The arrow diagram used in the previous example is very much like algebra. The top row of the arrow diagram below shows the operations applied to the equation x = -7. What steps are needed to return to the original equation?

ALGEBRA IS A "BALANCING ACT"...

INVERSE PROPERTY:

This property occurs when a mathematical operation is "undone". For example, subtraction "undoes" addition and division "undoes" multiplication. <u>Algebra is based on this property</u>. We sometimes say that we use the "method of inverse operations" to solve algebraic equations.

EX.:
$$x + 4 = 10$$

We need to isolate the "x" here to solve this equation, so we have to "undo" the addition next to the "x" by doing the opposite or inverse - a subtraction. Remember - what we do to one side of an equation, we <u>MUST</u> do to the other side as well!!!

$$x + 4 - 4 = 10 - 4$$

$$x = 6$$

EX.:
$$3x = 12$$

We need to isolate the "x" here to solve this equation, so we have to "undo" the multiplication next to the "x" by doing the opposite or inverse - a division.

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

EX. 1: Three times a number is -3.6.

Let *n* represent the number. Then, 3 times *n* is -3.6. The equation is: 3n = -3.6

$$\frac{3n}{3} = -3.6$$

EX. 1: Verify the solution (n = -1.2):

LS	RS
3n	-3.6
3(-1.2)	
-3.6	

 $LS = RS \cdot n = -1.2.$

EX. 2: A number divided by 4 is 1.5.

Let *m* represent the number. Then, *m* divided by 4 is 1.5. The equation is: $\frac{m}{4} = 1.5$

$$\frac{M}{4} = 1.5$$
 $\frac{M}{4} = 4(1.5)$
 $M = 6$

EX. 2: Verify the solution (m = 6):

LS	RS
<u>m</u> 4	1.5
4	
6	
6 4	
1.5	

 $LS = RS \bullet m = 6.$

What trick can we use to remember how to "undo" 2 or more mathematical operations???

SAMDEB!!!

(BEDMAS backwards.)

EX. 3: Let's solve this equation algebraically together using SAMDEB:

$$4.5d - 3.2 = -18.5$$

$$4.5d - 3.2 + 3.2 = -18.5 + 3.2$$

$$4.5d = -15.3$$

$$4.5d = -15.3$$

$$4.5 = -3.4$$

EX. 3: Verify the solution (d = -3.4):

LS	RS
4.5d - 3.2	-18.5
4.5(-3.4) - 3.2	
-15.3 - 3.2	
-18.5	

 $LS = RS \cdot d = -3.4.$

EX. 4: Let's solve this equation algebraically together using **SAMDEB**:

$$\frac{r+3}{4} = 7.2$$

$$\frac{r}{4} + 3 = 7.2$$

$$\frac{r}{4} = 4.2$$

$$\frac{r}{4} = 4.2$$

$$\frac{r}{4} = 4.2$$

$$\frac{r}{4} = 16.8$$

EX. 4: Verify the solution (r = 16.8):

LS	RS
$\frac{\mathbf{r}+3}{4}$	7.2
16.8 + 3	
4 4.2 + 3	
7.2	

 $LS = RS \cdot r = 16.8.$

"Books Never Written" Sheet

Feb. 8/16

	4y-9=15
Ŋ	4-9+9=15+0
	4y = 24
	4 4
	y = 6

LS	RS
44-9	15
467-4	J
15	

LS=RS: y=6.

CONCEPT REINFORCEMENT:

Worksheet: "Books Never Written"

(with 5 verifications)

HEADS UP - QUIZ SOON!!! There will be a short quiz on Section 6.1 once we have completed it, probably around Feb. 11. This will involve one-step and two-step equations, the distributive property, equations with one denominator and two denominators and verifications.