Questions...

p. 252: #1 - 3

p. 259: #1 - 4

would require the longest shelf? How long would the shelf

e) What point represents the number of cookbooks that would

require the shortest shelf? the other two points have a positive unference.

3. a) (50, 200); e.g., farthest point from both axes

b) No. These points are not in the feasible region.

c) (50, 100)

d) (50, 200); 75 in.

e) (0, 0) would require no shelving

2. The following model represents an optimization problem.

Determine the maximum solution.

Optimization Model

Restrictions

 $x \in \mathbb{R}$ and $y \in \mathbb{R}$

Objective function:

$$D = -5x + 3y$$

ONE MORE...

Malia and Lainey are baking cupcakes and banana mini-loaves to sell at a school fundraiser...

- No more than 60 cupcakes and 35 mini-loaves can be made each day.
- Malia and Lainey can make no more than 80 baked goods in total, each day. 4
- It costs \$0.50 to make a cupcake and \$0.75 to make a mini-loaf.

HOMEWORK: p. 259 #5, 7, 8, 11, 13

Multiple Choice => 10-15 Hursday

Open Response => 25-40 #2 > Word problem (constraints given)

Hy-) Word possiblem