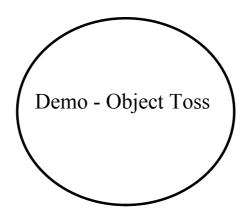
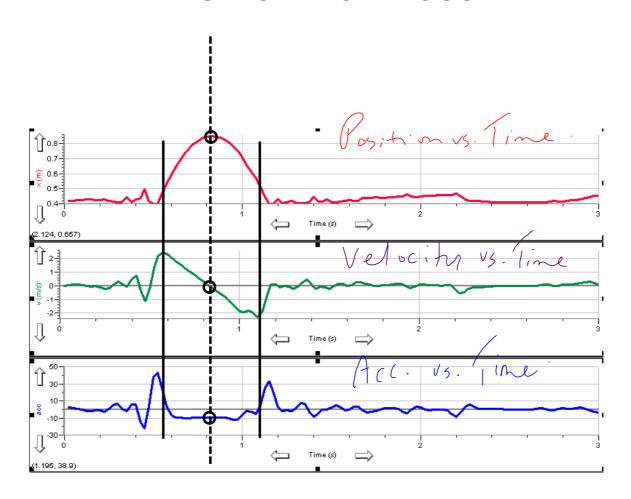
March 31 Gradekeeper Type Report


April 1 AM PT No School April 13 (Wed.) Report Cards

April 14 (Thur.) Evening PT


Physics 112 Thursday, March 24/16

- http://mvhs.nbed.nb.ca/
- http://mvhs-sherrard.weebly.com/
- 1. Worksheet Motion Problems HW
- 2. Freely Falling Bodies To Be Continued
- 3. Worksheet Freely Falling Bodies

Objects Moving Vertically

Demo - Ball Toss

Acceleration due to Gravity

The acceleration due to gravity is represented by the symbol \vec{g} . The magnitude of \vec{g} is influenced by

- 1. the mass of a planet \mathbf{N}
- 2. the distance of an object from the planet's centre

$$g = \frac{GM}{r^2}$$

P122 Formula

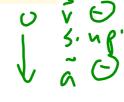

Text - Page 132

Table 4.3 Free-Fall Accelerations Due to Gravity on Earth

	Location	Acceleration due to gravity (m/s²)	Altitude (m)	Distance from Earth's centre (km)
メ	North Pole	.8322	0 (sea level)	6357
	equator	9.7805	0 (sea level)	6378
	Mt. Everest (peak)	9.7647	8850	6387
	Mariana Ocean Trench* (bottom)	9.8331	11 034 (below sea level)	6367
	International Space Station*	9.0795	250 000	6628

*These values are calculated.

Text - Page 133

Table 4.4 Free-Fall Accelerations Due to Gravity in the Solar System

Location	Acceleration due to gravity (m/s²)		
Earth	- 9.81 (-9.80m/s		
Moon	- 1.64		
Mars	~ 3.72		
Jupiter	25.9		

Ignoring <u>air resistance</u> (air friction), objects in free fall (rising <u>or</u> falling through air) have an acceleration of:

$$\overrightarrow{a}$$
 = -9.80 m/s² (Earth)

http://safeshare.tv/w/HseCPCrwwr

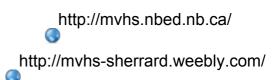
Objects in free fall or freely falling bodies are <u>always</u> accelerating - even when they may have zero velocity for an instant.

Science 122 Thursday, March 24/16

http://mvhs.nbed.nb.ca/
http://mvhs-sherrard.weebly.com/

1. Test - Magnetism -> Thursday, March 24/16

Science 10


Thursday, March 24/16

- 1. Test Chemistry
- 2. Lab Types of Reactions, Gas Collection and More
 - Each Person Passes in a Lab Sheet for Marking
 - Place in bin by today, March 24/16.

Physics 122

Thursday, March 24/16

- 1. Check -> Worksheets Relative Velocity Problems HW
- 2. Unit 1 Section 4: Collisions/Explosions
 - Review Momentum
 - Types of Collisions
 - Law of Conservation of Energy
 - 1D Collisiomns/Explosions
- 3. Worksheet: 1D Collisions