MAY 11, 2016

UNIT 8: CIRCLE GEOMETRY

8.1: PROPERTIES OF TANGENTS TO A CIRCLE

M. MALTBY INGERSOLL AND T. SULLIVAN MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will begin working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 1" OR "SS1" which states:

- "Solve problems and justify the solution strategy using circle properties, including:
- * the perpendicular from the centre of a circle to a chord bisects the chord:
- * the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc;
- * the inscribed angles subtended by the same arc are congruent;
- * a tangent to a circle is perpendicular to the radius at the point of tangency."

Please turn to page 382 in MMS9 ("What You'll Learn" and "Why It's Important".

VOCABULARY:

1. TANGENT: A line that intersects a circle at only one point (outside the circle).

2. POINT OF TANGENCY: The point where the

tangent intersects the circle.

(Please turn to *MMS9*, page 385 for a moment.)

Tangent
(AB)

Point of
Tangency
("P")

VOCABULARY:

3. TANGENT-RADIUS PROPERTY (TRP): A tangent to a circle is perpendicular to the radius at the point of tangency.

<APO = <BPO = 90° (TRP)

If AB is a tangent, then $OP \perp AB$

By joining "O" with "B", a right triangle is formed. What theorem could you use to find a missing side length here?

THE PYTHAGOREAN THEOREM!!! $a^2 + b^2 = c^2$

Using the Pythagorean Theorem in a Circle

Point O is the centre of a circle, and KT is a tangent to the circle. KT measures 20 cm, and KO measures 30 cm. Determine the length of the radius, OT, to the nearesttenth.

REMEMBER: $a^2 + b^2 = c^2$

$$a^{2} \xrightarrow{20 \text{ cm}} 5$$

$$C \qquad 2KT0 = 90^{\circ} (TRP)$$

$$a^{2} + b^{2} = c^{2}$$

$$a^{2} + a0^{2} = 30^{2}$$

$$a^{2} + 400 = 900$$

$$\sqrt{a^{2}} = \sqrt{500}$$

$$a = 22.3607$$

$$A = 22.46m$$

Solving Problems Using the Tangent and Radius Property

An airplane, W, is cruising at an altitude of 5600 m. A cross section of Earth is a circle with radius approximately 6400 km. A passenger wonders how far she is from a point H on the horizon she sees outside the window. Calculate this distance to the nearest kilometre.

$$\angle 0HW = 90^{\circ}(TRP)$$

 $\alpha^{2}Hb^{2} = c^{2}$
 $\alpha^{2} + 6400^{2} = 6405.6^{2}$
 $\alpha^{2} + 40960000 = 41031711.36$

$$\sqrt{a^2} = \sqrt{71711.36}$$
 $\alpha = 267.7898$
 $\alpha = 268 \text{ Km}$

5600 m

6400 km

5.6 Km

Determining the Measure of an Angle in a Triangle

REMEMBER: "SATT" (the sum of the angles in a triangle theorem) - the sum of the three angles in any triangle is ALWAYS 180.

Point O is the centre of a circle, and AB is a tangent to the circle. In \triangle ABO, <AOB = 56°. Determine the measure of <ABO.

CONCEPT REINFORCEMENT:

MM59:

PAGE 388: #3, #5 & #6

PAGE 389: #7 & #9

PAGE 390: #13, #14, & **#17**

Section 8.1 Sticky Note Activity.docx