**MAY 12, 2016** 

**UNIT 8: CIRCLE GEOMETRY** 

8.2: PROPERTIES OF CHORDS IN A CIRCLE

M. MALTBY INGERSOLL AND T. SULLIVAN MATH 9



#### WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 1" OR "SS1" which states:

"Solve problems and justify the solution strategy using circle properties, including:

- \* the perpendicular from the centre of a circle to a chord bisects the chord;
- \* the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc:
- \* the inscribed angles subtended by the same arc are congruent;
- \* a tangent to a circle is perpendicular to the radius at the point of tangency."

# HOMEWORK QUESTIONS? (Pages 388/89/90, #3, 5, 6, 7, 9, 13, 14 & 17)

5. a)
$$\chi = 90^{\circ} (TRP)$$
b)
$$\chi = 30^{\circ}$$

$$\angle OQP = 23^{\circ}(GIVEN)$$
  
 $\angle OPQ = 90^{\circ}(TRP)$   
 $\chi = 67^{\circ}(SATT)$ 

# HOMEWORK QUESTIONS? (Pages 388/89/90, #3, 5, 6, 7, 9, 13, 14 & 17)

# HOMEWORK QUESTIONS? (Pages 388/89/90, #3, 5, 6, 7, 9, 13, 14 & 17)

17. 
$$|a| = |a| =$$

1. CHORD: A line segment that joins two points on a circle. (A diameter of a circle is actually a special chord through the centre of the circle.)



2. PERPENDICULAR BISECTOR: Intersects a line segment at 90° and divides the line segment into two equal parts.



PQ = chord (line segment)
SR = perpendicular
bisector of PQ;
therefore, PR = QR.

#### 3. PERPENDICULAR TO CHORD PROPERTY 1

(PCP): The perpendicular from the centre of a circle to a chord bisects the chord.



**O** = centre of the circle (given)

$$<$$
R =  $<$ R = 900 (given)

$$PR = QR (PCP)$$

#### 4. PERPENDICULAR TO CHORD PROPERTY 2

(PCP): The perpendicular bisector of a chord in a circle passes through the centre of the circle.



5. PERPENDICULAR TO CHORD PROPERTY 3 (PCP): A line that joins the centre of a circle to the midpoint of a chord is perpendicular to the chord.



PR = QR (given)
O = centre of the circle (given)
• <R = <R = 90° (PCP)

Aren't they all saying the same thing?

# STOP!







There are 3 pieces to the Perpendicular to Chord Property puzzle:

The perpendicular bisector of a chord in a circle passes through the centre of the circle, intersects with the chord at a 90° angle and cuts the chord into two equal pieces.

As long as you have 2 of the pieces of the puzzle, you automatically know the third.

6. ISOSCELES TRIANGLE THEOREM (ITT): The two angles that are opposite to the two congruent sides in an isosceles triangle are also congruent.



 $I\!f: \ \overline{AB}\cong \overline{AC}$ 

then:  $\angle B \cong \angle C$ 

## Determining the Measure of Angles in a Triangle

**Example:** Determine the values of xo and yo in the diagram below.



### Using the Pythagorean Theorem in a Circle

Example: What is the length of chord CD to the nearest tenth?

