MAY 16, 2016

UNIT 8: CIRCLE GEOMETRY

8.2: PROPERTIES OF CHORDS IN A CIRCLE

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 1" OR "SS1" which states:

"Solve problems and justify the solution strategy using circle properties, including:

- * the perpendicular from the centre of a circle to a chord bisects the chord;
- * the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc:
- * the inscribed angles subtended by the same arc are congruent;
- * a tangent to a circle is perpendicular to the radius at the point of tangency."

HOW DID YOU MAKE OUT WITH THE 8.1 / 8.2 WORKSHEETS ON FRIDAY?

WARM-UP QUESTIONS: PAGE 389, #12; PAGE 397, #4a

72.
$$|a|^{2}$$
? $|A|^{2}$ 1.5Km $|a|^{2}$? $|A|^{2}$ 1.5Km $|a|^{2}$ 6401.5 Km $|a|^{2}$ $|a|^{2$

WARM-UP QUESTIONS: PAGE 389, #12; PAGE 397, #4a

3. PERPENDICULAR TO CHORD PROPERTY 1

(PCP): The perpendicular from the centre of a circle to a chord bisects the chord.

O = centre of the circle (given)

$$<$$
R = $<$ R = 900 (given)

$$\stackrel{\bullet}{\bullet}$$
 PR = QR (PCP)

4. PERPENDICULAR TO CHORD PROPERTY 2

(PCP): The perpendicular bisector of a chord in a circle passes through the centre of the circle.

5. PERPENDICULAR TO CHORD PROPERTY 3 (PCP): A line that joins the centre of a circle to the midpoint of a chord is perpendicular to the chord.

PR = QR (given)
O = centre of the circle (given)
• <R = <R = 90° (PCP)

Aren't they all saying the same thing?

STOP!

There are 3 pieces to the Perpendicular to Chord Property puzzle:

The perpendicular bisector of a chord in a circle passes through the centre of the circle, intersects with the chord at a 90° angle and cuts the chord into two equal pieces.

As long as you have 2 of the pieces of the puzzle, you automatically know the third.

6. ISOSCELES TRIANGLE THEOREM (ITT): The two angles that are opposite to the two congruent sides in an isosceles triangle are also congruent.

 $I\!f: \ \overline{AB}\cong \overline{AC}$

then: $\angle B \cong \angle C$

Determining the Measure of Angles in a Triangle

Example: Determine the values of xo and yo in the diagram below.

Using the Pythagorean Theorem in a Circle

Example: What is the length of chord CD to the nearest tenth?

CONCEPT REINFORCEMENT:

MM59:

PAGE 397: #3, #4bc, #5 & #6