MAY 19, 2016

UNIT 8: CIRCLE GEOMETRY

8.3: PROPERTIES OF ANGLES IN A CIRCLE

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 1" OR "SS1" which states:

"Solve problems and justify the solution strategy using circle properties, including:

- * the perpendicular from the centre of a circle to a chord bisects the chord;
- * the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc;
- * the inscribed angles subtended by the same arc are congruent;
- * a tangent to a circle is perpendicular to the radius at the point of tangency."

WARM-UP: Find angles a, b, c and d.

$$a^{0} = b^{0} = 50^{\circ} (ITT / SATT)$$

 $c^{0} = 40^{\circ} (TRP)$
 $d^{0} = 90^{\circ} (TRP)$

HOMEWORK QUESTIONS???

(pages 390/391, #18 & #20: page 399, #14) #17, #18)& #19)

14.

$$\angle DEO = 90^{\circ}(PCP) \\
CE = DE = 3cm(PCP) \\
BO = ? \\
a^{2} + b^{2} = c^{2} \\
3^{2} + 15^{2} = c^{2} \\
9 + 225 = c^{2} \\
\sqrt{234} = \sqrt{c^{2}} \\
15. 3cm = C (Radias)$$

HOMEWORK QUESTIONS???

(pages 390/391, #18 & #20: page 399, #14, #17, #18 & #19)

18.

$$D0 = Ab - AO$$

= 2.8-1.8
= 1 m

$$a^{2} + b^{2} = c^{2}$$
 $a^{2} + 1^{2} = 1.8^{2}$
 $a^{2} + 1 = 3.24$
 $\sqrt{a^{2}} = \sqrt{2.24}$
 $a = 1.4967m$
(CD)

$$BC = 2(CO)$$

 $= 2(1.4967)$
 $= 3 m$

1. ARC: A section of the circumference of a circle. In the diagram below, the shorter arc AB is the MINOR ARC, and the longer arc AB is the MAJOR ARC.

Major arc AB

Major arc AB

Minor arc AB

- 2. CENTRAL ANGLE: The angle formed by joining the endpoints of an arc to the centre of the circle. (This is done using 2 radii.)
- 3. INSCRIBED ANGLE: The angle formed by joining the endpoints of an arc to a point on the circle.

The inscribed and central angles in this circle are **SUBTENDED** by the minor arc AB.

4. CENTRAL ANGLE AND INSCRIBED ANGLE PROPERTY (CIAP): In a circle, the measure of a central angle subtended by an arc is TWICE the measure of an inscribed angle subtended by the SAME arc.

5. INSCRIBED ANGLES PROPERTY (IAP): In a circle, ALL inscribed angles subtended by the SAME arc are congruent (equal).

6. ANGLES IN A SEMICIRCLE PROPERTY

(ASP): All inscribed angles subtended by a semicircle are RIGHT angles.

This makes sense - think of CIAP; an inscribed angle is half the central angle when the are subtended by the same

7. OPPOSITE ANGLES IN A CYCLIC QUADRILATERAL PROPERTY (CQP):

The opposite angles in a cyclic quadrilateral (a quadrilateral whose vertices all touch the circumference of a circle) add up to 180°.

EXAMPLE: USING INSCRIBED AND CENTRAL AN

Point O is the center of a circle. Determine the values of k and to.

EXAMPLE: APPLYING THE ANGLES IN A SEMICIRCLE P

Point O is the center of the circle. Determine the values of $x \circ$ and $y \circ$.

```
<x = 64° (CIAP)

<A = 90° (ASP)

<y = 58° (SATT)

OR

<y = 58° [ITT/SATT; (180°-64°)/2]
```


CONCEPT REINFORCEMENT:

MM59:

PAGE 410: #3 TO #5

PAGE 411: #6

Worksheet - Angles in a Circle.doc