MAY 20, 2016

UNIT 8: CIRCLE GEOMETRY

8.3: PROPERTIES OF ANGLES IN A CIRCLE

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 1" OR "SS1" which states:

"Solve problems and justify the solution strategy using circle properties, including:

- * the perpendicular from the centre of a circle to a chord bisects the chord;
- * the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc;
- * the inscribed angles subtended by the same arc are congruent;
- * a tangent to a circle is perpendicular to the radius at the point of tangency."

WARM-UP: O is the centre of each circle. Determine the values of xo and yo. Justify your answers.

HOMEWORK QUESTIONS???

$$22 - 130^{\circ}$$
 $(180^{\circ} - 50^{\circ})$
 $2y = 25^{\circ}(ITT/SATT)$

HOMEWORK QUESTIONS???

(pages 410 / 411, #3 TO #6)

HOMEWORK QUESTIONS??? (pages 410 / 411, #3 TO #6)

HOMEWORK QUESTIONS??? (pages 410 / 411, #3 TO #6)

4. CENTRAL ANGLE AND INSCRIBED ANGLE PROPERTY (CIAP): In a circle, the measure of a central angle subtended by an arc is TWICE the measure of an inscribed angle subtended by the SAME arc.

5. INSCRIBED ANGLES PROPERTY (IAP): In a circle, ALL inscribed angles subtended by the SAME arc are congruent (equal).

6. ANGLES IN A SEMICIRCLE PROPERTY

(ASP): All inscribed angles subtended by a semicircle are RIGHT angles.

This makes sense - think of CIAP; an inscribed angle is half the central angle when the are subtended by the same

7. OPPOSITE ANGLES IN A CYCLIC QUADRILATERAL PROPERTY (CQP):

The opposite angles in a cyclic quadrilateral (a quadrilateral whose vertices all touch the circumference of a circle) add up to 180°.

EXAMPLE: USING INSCRIBED AND CENTRAL AN

Point O is the center of a circle. Determine the values of k and to.

EXAMPLE: APPLYING THE ANGLES IN A SEMICIRCLE P

Point O is the center of the circle. Determine the values of $x \circ$ and $y \circ$.

```
<x = 64° (CIAP)

<A = 90° (ASP)

<y = 58° (SATT)

OR

<y = 58° [ITT/SATT; (180°-64°)/2]
```


EXAMPLE: DETERMINING ANGLES IN AN INSCRIBED TI

Determine the values of x° , y° , and z° .

(HINT: There are 360° in a circular rotation.)

 $< x = 120^{\circ} [360^{\circ} - (100^{\circ} + 140^{\circ})]$

<y = 60° (CIAP)

 $< z = 30^{\circ} [ITT / SATT; (180 - 120^{\circ})/2]$

EXAMPLE: DETERMINING ANGLES IN A CYCLIC QUA

Point O is the center of the circle. Determine the values of $x \circ$ and $y \circ$.

$$< x = 95^{\circ} (CQP)$$

CONCEPT REINFORCEMENT:

MM59:

PAGE 411: #9 & #11

PAGE 419: #9 & #10

PAGE 420: #2

PAGE 466: #20

PAGE 467: #23

Worksheet - Angles in a Circle.doc