MAY 4, 2016

UNIT 7: SIMILARITY AND TRANSFORMATIONS

7.7: IDENTIFYING TYPES
OF SYMMETRY ON THE
CARTESIAN PLANE

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 5" OR "SS5" which states:

"Demonstrate an understanding of line and rotation symmetry."

What does THAT mean???

SCO SS5 means that we will:

- * classify a given set of 2-D shapes or designs according to the number of lines of symmetry
- * complete a 2-D shape or design given one half of the shape or design and a line of symmetry
- * determine if a 2-D shape or design has rotational symmetry about the point at the centre of the shape or design and, if it does, state the order and angle of rotation
- * rotate a given 2-D shape about a vertex and draw the resulting image
- * identify a line of symmetry or the order and angle of rotation symmetry in a given tessellation
- * identify the type of symmetry that arises from a given transformation on the Cartesian plane
- * complete, concretely or pictorially, a given transformation of a 2-D shape on a Cartesian plane, record the coordinates and describe the type of symmetry that results
- * identify and describe the types of symmetry created in a given piece of artwork
- * determine whether or not two given 2-D shapes on the Cartesian plane are related by either rotational or line symmetry
- * draw, on a Cartesian plane, the translation image of a given shape using a given translation rule, such as R2, U3, label each vertex and its corresponding ordered pair and describe why the translation does not result in line or rotational symmetry

What does THAT mean???

In today's lesson, we will work on the following achievement indicators for SCO SS5:

- * identify the type of symmetry that arises from a given transformation on the Cartesian plane
- * complete, concretely or pictorially, a given transformation of a 2-D shape on a Cartesian plane, record the coordinates and describe the type of symmetry that results
- * identify and describe the types of symmetry created in a given piece of artwork
- * determine whether or not two given 2-D shapes on the Cartesian plane are related by either rotational or line symmetry
- * draw, on a Cartesian plane, the translation image of a given shape using a given translation rule, such as R2, U3, label each vertex and its corresponding ordered pair and describe why the translation does not result in line or rotational symmetry

WARM UP:

Determine if the following shapes have rotational symmetry. If so, state their order of rotation and their angle of rotation symmetry.

1.

2.

WARM UP:

Determine if the following shapes have rotational symmetry. If so, state their order of rotation and their angle of rotation symmetry.

1.

Order of Rotation: 6
Angle of Rotation: 60°

2.

Order of Rotation: 4
Angle of Rotation: 90°

HOMEWORK QUESTIONS?

(pages 365/6/7, #4, 5, 6, 8, 9, 12, 14 & 15)

TRANSFORMATIONS INVESTIGATION:

Your mission, should you choose to accept itn(d, BTW, you MUST accept jt is to investigate 3 suspicious transformations: areflection, a rotation and a translation

You will determine if these transformations result in a shape you can describe and if they have symmetry and/orrotational symmetry READY?

GO!!!!!!!!

TRANSFORMATION #1:

a) Set up a grid. Use values of 2 to +6 on both the x and y axis. NOTE: You may choose to do these 3 transformations on one grid. To do so, you will need to use values of 4 to +10 on both the x and y axis.)

TRANSFORMATION #1:

- b) Plot and join the points A (1,3), B (3,1) and C (5,5) to form triangle ABC on your grid.
- c) Reflect triangle ABCthrough line AB Label the coordinates of any new vertices in the reflection image.

USING YOUR GRAPH, ANSWER THE FOLLOWING QUESTIONS:

- i) Do the 2 triangles, as a whole, form a shape? If so, describe it.
- ii) Do the 2 triangles, as a whole, have line symmetry? If so, describe it.
- iii) Do the 2 triangles, as a whole, have rotational symmetry? If so, describe it.

C' (-1, -1)

C' (-1, -1)

- i) The 2 triangles form a rhombus (ACBC'; a parallelogram with 4 equal sides).
- ii) They have line symmetry in the oblique lines passing through points (0, 4) and (4, 0) <u>AND</u> (-1, -1) and (5, 5).
- iii) They have rotational symmetry of order 2 about point (2, 2).

TRANSFORMATION #2:

- a) Set up a grid (unless you are using the same one for all 3 transformations).

 Use values of 0 to +10 on both the x and y axis.
- b) Plot and join the points A (1,3), B (3,1) and C (5,5) to form triangle ABC on your grid.
- c) Rotate triangle ABC180° about vertex C. Label the coordinates of any new vertices in the rotation image.

USING YOUR GRAPH, ANSWER THE FOLLOWING QUESTIONS:

- i) Do the 2 triangles, as a whole, form a shape? If so, describe it.
- ii) Do the 2 triangles, as a whole, have line symmetry? If so, describe it.
- iii) Do the 2 triangles, as a whole, have rotational symmetry? If so, describe it.

A' (9,7)

B' (7,9)

A' (9,7)

B' (7,9)

- i) The 2 triangles form a hexagon shape (BACB'A').
- ii) They have line symmetry in the oblique lines passing through points (2, 8) and (8, 2) <u>AND</u> (2, 2) and (8, 8).
- iii) They have rotational symmetry of order 2 about vertex C (5, 5).

- a) Set up a grid (unless you are using the same one for all 3 transformations).
 Use values of0 to +8 on the x-axis and -2 to +6 on the y-axis.
- b) Plot and join the points A (1,3), B (3,1) and C (5,5) to form triangle ABC on your grid.
- c) Translatetriangle ABC2 units right and 2 units down (R2, D2) Label the coordinates of any new vertices in the translation image.

USING YOUR GRAPH, ANSWER THE FOLLOWING QUESTIONS:

- i) Do the 2 triangles, as a whole, form a shape? If so, describe it.
- ii) Do the 2 triangles, as a whole, have line symmetry? If so, describe it.
- iii) Do the 2 triangles, as a whole, have rotational symmetry? If so, describe it.

- i) The 2 triangles form a hexagon shape.
- ii) They have line symmetry in the oblique line passing through points (3, 1) and (6, 4).
- iii) They do NOT have rotational symmetry because there is no point about which they can be rotated so that they coincide with themselves.

CONCEPT REINFORCEMENT:

MM59:

PAGE 373: #3, #5 & #6

PAGE 374: #8, #9, #10 & #11

PAGE 375: #15

TEST PREPARATION - SUGGESTED PRACTICE QUESTIONS:

MM59:

PAGE 376: STUDY GUIDE

PAGE 377/8/9: #3, #6, #8 TO #12 & #14 TO #19

PAGE 380: PRACTICE TEST, #1, #2 & #4

PAGE 465/6: #14 TO #17

WORKSHEETS:

7.1: #1, #2 & #5

7.2: #1, #3 & #4

7.3: #1, #3 & #4

7.4: #1 TO #4

7.5: #1 TO #3

7.6: #1 TO #5

7.7: #1 TO #4