Geometric Proofs... The 'Two-Column Proof'

Key Terms (in your notes)...

deductive reasoning

Drawing a specific conclusion through logical reasoning by starting with general assumptions that are known to be valid.

proof

A mathematical argument showing that a statement is valid in all cases, or that no counterexample exists.

transitive property

If two quantities are equal to the same quantity, then they are equal to each other. If a = b and b = c, then a = c.

two-column proof

A presentation of a logical argument involving deductive reasoning in which the statements of the argument are written in one column and the justifications for the statements are written in the other column.

STATEMENT	JUSTIFICATION
	-

Example #1:

In $\triangle EFG$, GI bisects $\angle FGH$

a) If $\angle E = \angle y$, then prove that $EF \parallel GI$

Statement Justification

LE = Ly Given
Bisected

LY = LZ Transitive

CA

CA

In $\triangle EFG$, GI bisects $\angle FGH$

b) If $\angle F = \angle z$, then prove that $EF \parallel GI$

Statement Justification

Ly = LZ

CF = LZ

Given

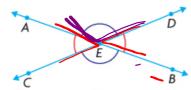
Transitive

AZA

p. 29

Using deductive reasoning to prove a geometric conjecture

Prove that when two straight lines intersect, the vertically opposite angles are equal.



Jose's Solution: Reasoning in a two-column proof

Statement	Justification
$\angle AEC + \angle AED = 180^{\circ}$	Supplementary angles SAT
$\angle AEC = 180^{\circ} - \angle AED$	Subtraction property
$\angle BED + \angle AED = 180^{\circ}$	Supplementary angles SA 1
$\angle BED = 180^{\circ} - \angle AED$	Subtraction property
• \triangle $\triangle AEC = \triangle BED$	Transitive property

APPLY the Math

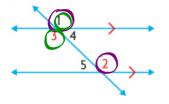
ехамрье **1** р. 75

Reasoning about conjectures involving angles formed by transversals

Make a conjecture that involves the interior angles formed by parallel lines and a transversal. Prove your conjecture.

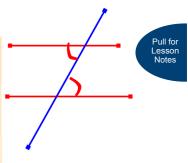
Tuyet's Solution

My conjecture: When a transversal intersects a pair of parallel lines, the **alternate interior angles** are equal.



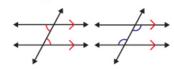
I drew two parallel lines and a transversal as shown, and I numbered the angles. I need to show that $\angle 3 = \angle 2$.

Statement	Justification	
∠1 = ∠2	Corresponding angles ((A)	Since I know that the lines are parallel, the corresponding angles are equal.
∠1 = ∠3	vertically opposite angles	When two lines intersect, the opposite angles are equal.
∠3 = ∠2	Transitive property	$\angle 2$ and $\angle 3$ are both equal to $\angle 1$, so $\angle 2$ and $\angle 3$ are equal to each
My conjecture is proved.		other.



alternate interior angles

Two non-adjacent interior angles on opposite sides of a transversal.



Homework...

p. 72: #4-6

p. 78: #2, 8, 10, 12, 20 ellol

Perpendicular Properticular