HOMEWORK...

Questions

p. 452: #1 - 6, 10, 11

30

$$\underbrace{A = P + I}^{\&}$$
OR

$$A = P + Prt$$

$$A = P(1 + rt)$$

3. a) Principal of \$1000 is invested at 5% simple interest, paid annually, for 5 years. What is the rate of return?

b) Which option below would yield the greatest future value? What is the rate of return for this option?

- **A.** increasing the principal to \$1050
- B. increasing the interest rate to 6%
- C. paying interest every 6 months
- D. increasing the term to 6 years

-100AY C

TEPIT VARM-UP A=P+Pit
A=P+I

You earned \$107.42 simple interest on a \$671.37 investment over four years.

What was the interest rate?

rate of return

The ratio of money earned (or lost) on an investment relative to the amount of money invested, usually expressed as a decimal or a percent.

Determining the duration of a simple interest investment

Ingrid invested her summer earnings of \$5000 at 8% simple interest, paid annually. She intends to use the money in a few years to take a holiday with a girlfriend.

- (How long)will it take for the future value of the investment to grow to \$8000?
 - b) What is Ingrid's rate of return?

Ingrid's Solution

a)
$$A = P + Prt$$

 P is \$5000.
 r is 8%, or 0.08.
 A is \$8000.

$$8000 = 5000 + (5000)(0.08)t$$

$$3000 = 400t$$

$$7.5 = t$$

I knew P, r, and A. I determined t by substituting these known values into the formula A = P + Prt and solving for t.

Because I needed to isolate t, I knew that the A = P + Prt form of the equation would have fewer solution steps than the A = P(1 + rt) form would.

It will take 8 years for the future --value of the investment to be at least \$8000.

I knew 7.5 years would not work because the interest is paid annually. This meant that I had to round up to the next whole year. It also meant that, at 8 years, the future value would be more than \$8000.

$$A = P + Prt$$

$$A = 5000 + (5000)(0.08)(8)$$

$$A = 8200$$

At 8 years, the future value will be \$8200.

Interest earned:

$$\$8200 - \$5000 = \$3200$$

Rate of return =
$$\frac{3200}{5000}$$

Rate of return = 0.64

I determined the interest earned by subtracting the principal from the future value.

I compared the interest earned with the principal to determine the rate of return.

The rate of return is 64% over 8 years.

EXAMPLE 3 p. 448

Determining the duration of a simple interest investment (

Ingrid invested her summer earnings of \$5000 at 8% simple interest, paid annually. She intends to use the money in a few years to take a holiday with a girlfriend. $A = P + I \longrightarrow I = A - P$ (a) How long will it take for the future value of the investment to grow

to \$8000?

b) What is Ingrid's rate of return?

$$= \mathcal{I} = V(t)$$

$$= 5000(0.00)$$

$$= \frac{3200}{5000} \times 100^{1}$$

EXAMPLE 4

Determining the rate of interest on a simple interest investment

p. 450

Grant invested \$25 000 in a simple interest Canada Savings Bond (CSB) that paid interest annually.

- a) If the future value of the CSB is \$29 375 at the end of 5 years, what interest rate does the CSB earn?
- b) Grant cashed in the bond after 4.5 years because a house he had been admiring came up for sale and he needed a down payment. How much money did he have for the down payment?

$$= \frac{1}{100}$$

$$= \frac{4375}{3500(5)} \times 100^{1}$$

$$= \frac{3.500}{3}$$

PRACTICE rearranging... I = Prt

When finished...PRACTICE rate of return (ROR)

Text p. 452: #3 & #12

Worksheet - Rearranging Simple Interest.pdf