Untitled.notebook November 16, 2016

***ADD this one to your notes...

converse

A statement that is formed by switching the premise and the conclusion of another statement.

EXAMPLES...

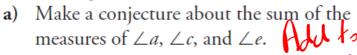
Conjecture: If it is raining outside, then the grass is wet.

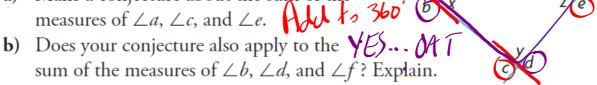
CONVERSE: If the grass is wet, then it is raining.

THEOREM: If you have parallel lines, then the corresponding angles are equal.

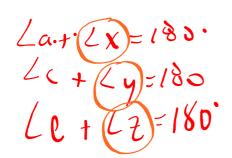
CONVERSE: If the corresponding angles are equal, then the lines are parallel.

8. Each vertex of a triangle has two exterior angles, as shown.

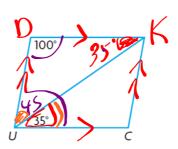




c) Prove or disprove your conjecture.



9. *DUCK* is a parallelogram. Benji determined the measures of the unknown angles in *DUCK*. Paula says he has made an error.



Benji's Solution

,
Statement
$\angle DKU = \angle KUC$
$\angle DKU = 35^{\circ}$
LUDK = LDUC * LLOK + LOUCE
$\angle DUK + \angle KUC = 100^{\circ}$
$\angle DUK = 65^{\circ}$
$\angle UKC = 65^{\circ}$
$\angle UCK = 180^{\circ} - (\angle KUC + \angle UKC)$
$\angle UCK = 180^{\circ} - (35^{\circ} + 65^{\circ})$
$\angle UCK = 80^{\circ}$ D K
100° 35°
65°
65°
100250

Justification

 $\angle DKU$ and $\angle KUC$ are alternate interior angles.

LA LUDK and LDUC are corresponding angles.

 $\angle DUK$ and $\angle UKC$ are alternate interior angles.

The sum of the measures of the angles in a triangle is 180°.

I redrew the diagram, including the angle measures I determined.

- a) Explain how you know that Benji made an error.
- **b)** Correct Benji's solution.

2.4

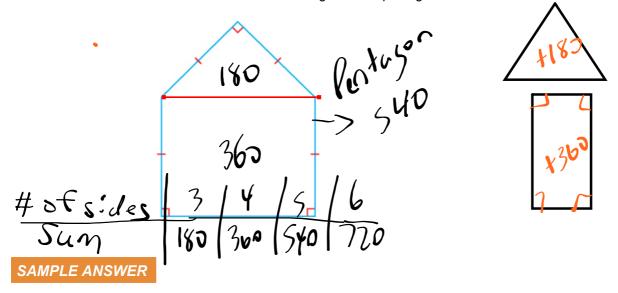
Angle Properties in Polygons

GOAL

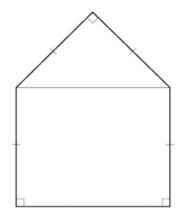
Determine properties of angles in polygons, and use these properties to solve problems.

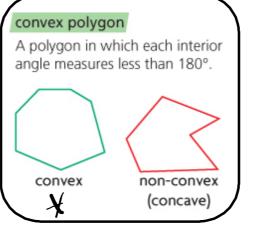
EXPLORE...

• A pentagon has three right angles and four sides of equal length, as shown. What is the sum of the measures of the angles in the pentagon?



I drew a diagonal joining the two angles that are not right angles. This cut the pentagon into a rectangle and a triangle. I knew that the quadrilateral was a rectangle, not a trapezoid, because the two right angles share an arm, so their other arms must be parallel. As well, the other arms are equal length. I knew that the sum of the measures of the angles in a rectangle is 360° and the sum of the measures of the angles in a triangle is 180°, so the sum of the measures of the angles in the pentagon must be 540°.



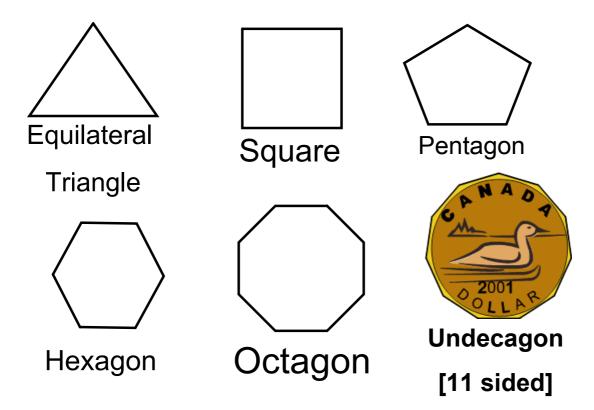


This is my conjecture: The sum of the measures of the interior angles in a polygon, S(n), is:

$$\widehat{S(n)} = 180^{\circ}(n-2)$$

Untitled.notebook November 16, 2016

$\textbf{Regular Polygon} \rightarrow \text{ all angles / sides are equal}$



EXAMPLE 2

Reasoning about angles in a regular polygon

Outdoor furniture and structures like gazebos sometimes use a regular hexagon in their building plan. Determine the measure of each interior angle of a regular hexagon.

Nazra's Solution

Let S(n) represent the sum of the measures of the interior angles of the polygon, where n is the number of sides of the polygon.

$$S(n) = 180^{\circ}(n-2)$$

$$S(6) = 180^{\circ}[(6) - 2]$$

$$S(6) = 720^{\circ}$$

$$S(6) = 180 [(6) - 2]$$

$$S(6) = 720^{\circ}$$

$$\frac{720^{\circ}}{6} = 120^{\circ} - \cdots$$

The measure of each interior angle of a regular hexagon is 120°. A hexagon has six sides, so n = 6.

Since the measures of the angles in a regular hexagon are equal, each angle must measure $\frac{1}{6}$ of the sum of the angles.

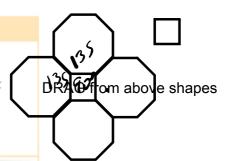
Huxagon vs Octagon
135° 790
130° (8-2)

Tiling Using Regular Polygons...

360 (100(11-6))
Measure of Interior Angle (degrees)
60
90
108
120
128.3
135
140
144

EXAMPLE 3 Visualizing tessellations

A floor tiler designs custom floors using tiles in the shape of regular polygons. Can the tiler use congruent regular octagons and congruent squares to tile a floor, if they have the same side length?



Vanessa's Solution

$$S(n) = 180^{\circ}(n-2)$$

 $S(8) = 180^{\circ}[(8) - 2]$

$$S(8) = 1080^{\circ}$$

 1080°

$$\frac{1080^{\circ}}{8} = 135^{\circ}$$

The measure of each interior angle in a regular octagon is 135°.

The measure of each internal angle in a square is 90°.

Since an octagon has eight sides, n = 8.

First, I determined the sum of the measures of the interior angles of an octagon. Then I determined the measure of each interior angle in a regular octagon.

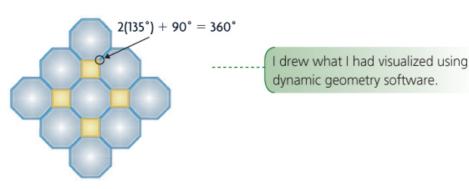
Two octagons fit together, forming an angle that measures:

$$2(135^{\circ}) = 270^{\circ}.$$

This leaves a gap of 90°.

$$2(135^{\circ}) + 90^{\circ} = 360^{\circ}$$

A square can fit in this gap if the sides of the square are the same length as the sides of the octagon. I knew that three octagons would not fit together, as the sum of the angles would be greater than 360°.



The tiler can tile a floor using regular octagons and squares when the polygons have the same side length.

In Summary

Key Idea

 You can prove properties of angles in polygons using other angle properties that have already been proved.

Need to Know

- The sum of the measures of the interior angles of a convex polygon with n sides can be expressed as $180^{\circ}(n-2)$.
- The measure of each interior angle of a regular polygon is $\frac{180^{\circ}(n-2)}{n}$.
- The sum of the measures of the exterior angles of any convex polygon is 360°.

Untitled.notebook November 16, 2016

HOMEWORK...

Page 99: 1, 3, 4, 5, 10, 11, 16

HISTORY on Buckyball Do A, B and C

