HOMEWORK Questions... - p. 457: #1,(2) - p. 468: #2,6,7 ## **Simple** $$\begin{bmatrix} I = Prt \\ & &$$ $$A = P + Prt$$ $$A = P(1 + rt)$$ ## **Compound** $$A = P\left(1 + \frac{r}{n}\right)^{nt}$$ $$I = A - P$$ - 2. Sydney wants to open a savings account. He has \$6500 to deposit. He intends to keep the account for 4 years and then use the money to rebuild the engine of his car. Which account should he choose? Justify your choice. - A. 5.1% simple interest, paid weekly - **B.** 4.8% compound interest, paid annually 6. Trust funds are investments that are set up for a specific purpose. A local business invested \$250 000 in a charitable trust fund so that a school can offer scholarships. The interest rate is 3.8%, compounded semi-annually. Only the interest earned can be used to provide the scholarships. How much is available from the trust fund for scholarships each year? $A = 250000(1+\frac{0.038}{2})^{2x}$ A = 259590.25 Untitled.notebook November 28, 2016 ## How to make money??? p. 463 Comparing interest on investments with different compounding periods Céline wants to invest \$3000 so that she can buy a new car in the next 5 years. Céline has the following investment options: A. 4.8% compounded annually B. 4.8% compounded semi-annually C. 4.8% compounded monthly D. 4.8% compounded weekly E. 4.8% compounded daily ``` 3000(1+0.048/1)^ 5 3792.518151 ■ ``` 3000(1+0.048/52) ^(52*5) 3813.325288 ### Rule of 72 A simple formula for estimating the doubling time of an investment; 72 is divided by the annual interest rate as a percent to estimate the doubling time of an investment in years. The Rule of 72 is most accurate when the interest is compounded annually. #### p. 465 #### Example 5 Estimating doubling times for investments Both Berta and Kris invested \$5000 by purchasing Canada Savings Bonds. Berta's CSB earns 8%, compounded annually, while Kris's CSB earns 9%, compounded annually. a) Estimate the doubling time for each CSB. Rule of $$72 = \frac{72}{Rate}$$ Berta (81/2) $\frac{72}{8} = 99885$ $\frac{72}{9} = 898$ ## **Present Value...** \$ needed to invest(NOW) to get a fixed amount later $$P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}}$$ # 8.4 # **Compound Interest: Present Value** #### **GOAL** Determine the principal or present value of an investment, given its future value and compound interest rate. # Determining the present value of an investment that is compounded quarterly Agnes and Bill are musicians. They have repearched the costs to set up a small recording studio. They estimate that \$40,000 will pay for the soundproofing, recording equipment, and computer hardware and software that they need. They plan to set up the studio it 3 years and have invested money at 9.6%, compounded quarterly, to save for it. a) How much money should they have invested? b) How much interest will they earn over the term of their investment? a) $$P = \frac{A}{(1+\frac{C}{A})^4}$$ $$= ### **HOMEWORK...** \$ 1000 2000 40000 10000 p. 468: Rule of 72... #3 (only estimate the doubling time) #5a & *(*#8 **Compound Interest (Future Value)** #10 & #12 p. 478: Compound Interest (Present Value) #4, #6, #7, & #9