

## Warm Up Grade 9











# **Order of Operations** with



# **Exponents**



## THERE IS A huge DIFFERENCE!

-52 There is a  $(-1)5^2$  negative one being multiplied by the  $5^2$ .  $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$   $(-5)^2$  (-5)



### BEDMAS



$$[3+(-3)^{0}-5(3-7)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[3+(-3)^{0}-5(-4)^{2}]+1$$

$$[-70]+1=(-75)$$

BEDMAS



$$-5^{2}+(4+(-2)^{2}-3)^{3}$$

$$-5^{2}+(4+(-2)^{2}-3)^{3}$$

$$-5^{2}+(4+(-2)^{2}-3)^{3}$$

$$-5^{2}+(5)^{3}$$

$$-5^{2}+(5)^{3}$$

$$-35+135$$

$$100$$

$$[(-4-(-3))^{2}]^{2}-(-5^{3}+2)^{3}$$

$$(-1)^{3})^{2}-(-125+2)^{3}$$

$$(-1)^{3}-(-125+2)^{3}$$

$$(-1860867)$$

$$(860868)$$

Lyn has a square swimming pool, 2 m deep with side length 4 m. The swimming pool is joined to a circular hot tub, 1 m deep with diameter 2 m. Lyn adds 690 g of chlorine to the pool and hot tub each week. This expression represents how much chlorine is present per 1 m<sup>3</sup> of water:

$$\frac{690}{2\times4^2+\pi\times1^3}$$

The suggested concentration of chlorine is 20 g/m<sup>3</sup> of water. What is the concentration of chlorine in Lyn's pool and hot tub? Is it close to the suggested concentration?





Copyright
\*Image taken from "Math Makes Sense 9",
page 65, copyright to pearson education
Canada

#### Class/Homework

#### Page 66-68