Untitled.notebook October 21, 2016

MUST
MEMORIZE
THESE
NOTES
IN ORDER
TO KNOW
AMBIGUOUS
CASE

Criteria for the Ambiguous Case...

- Must be given SSA
- · Given angle is acute
- a < b

*** If ALL 3 criteria are met, then...

CALCULATE THE ALTITUDE

alt = b sin A

CASE 1: a < altitude; there is NO SOLUTION

CASE 2: a = altitude; there is <u>ONE SOLUTION</u> [Right Triangle]

CASE 3: a >altitude; this is the 'AMBIGUOUS CASE'...TWO SOLUTIONS

1) Acute Triangle (angle, θ , is found with Law of Sines)

2) Obtuse Triangle (angle is 180° - θ)

EXAMPLE 1

Connecting the SSA situation to the number of possible triangles

Given each SSA situation for $\triangle ABC$, determine how many triangles are possible.

(a) $\angle A = 30^{\circ}, a = 4 \text{ m}, \text{ and } b = 12 \text{ m}$ (b) $\angle A = 30^{\circ}, a = 6 \text{ m}, \text{ and } b = 12 \text{ m}$ (c) $\angle A = 30^{\circ}$, a = 8 m, and b = 12 m(d) $\angle A = 30^{\circ}$, a = 15 m, and b = 12 m

m att=12510 2m alt=6

Case 1 -> 9.4 alt (a) no solution Case 2 -> a = alt (b) | Right triangle Case 3:-> u> ult (c) 2 solutions

b = 12 h A

$$\sin 30^\circ = \frac{h}{12}$$

$$12 \sin 30^\circ = h$$
$$6 \text{ m} = h$$

I drew the beginning of a triangle with a 30° angle and a 12 m side.

I used the sine ratio to calculate the height of the triangle.

I can use this height as a benchmark to decide on side lengths opposite the 30° angle that will result in zero, one, or two triangles.

a) $\angle A = 30^{\circ}$, a = 4 m, and b = 12 m

12 m

4 m

No triangles are possible.

Since a < b and a < h, I knew that no triangles are possible.

I used a compass to be certain. I set the compass tips to represent 4 m. I placed one tip of the compass at the open end of the 12 m side and swung the pencil tip toward the other side. The pencil couldn't reach the base, so a 4 m side could not close the triangle.

b) $\angle A = 30^{\circ}$, a = 6 m, and b = 12 m $\begin{array}{c} 12 \text{ m} \\ \hline & 30^{\circ} \end{array}$

One triangle is possible.

Since a < b and a = h, there is only one possible triangle, a right triangle.

A compass arc intersects the base at only one point.

c) $\angle A = 30^{\circ}$, a = 8 m, and b = 12 m

triangles.

Since a < b and a > h, there are two possible

A compass arc intersects the base at two points.

Two triangles are possible.

d) $\angle A = 30^{\circ}$, a = 15 m, and b = 12 m

Since a > b, only one triangle is possible.

A compass arc intersects the base at only one point.

One triangle is possible.

Example 2:

Solve the triangle ABC if a = 10, b = 12 and angle A = 72°.

Example 3:

Given that $A = 25^{\circ}$, a = 15, and b = 33, find the measure of angle B to the nearest degree. If there are two answers, give both of them. If there

are no possible answers, write "none".

Untitled.notebook October 21, 2016

HOMEWORK...

Worksheet - Ambiguous Case.pdf

Do questions #1, 2 & 4 **MEMORIZE...QUIZ MONDAY!**

Worksheet - Ambiguous Case.pdf