SOLUTIONS/QUESTIONS FROM THE HOMEWORK???

HE HAS NO PROPER TEA He has no proper tea (property). Page 158 SHE HAD A BUM STEER

HOMEWORK...

Questions...

Graphing Linear Functions

NOTES - Graphing Linear Relationships.docx

Method #1 - Table of Values (must have at least 3 points)

ex:
$$3x - 6y + 18 = 0$$

Method #2 - Using the slope/y intercept form of the equation

• put equation in the form.

$$y = \mathbf{m}x + \mathbf{b}$$

- plot the *y* intercept
- use slope = Rise
 Run
 to plot other points.

ex:
$$3x - 2y = -4$$

Method #3 - Using x / y intercepts

(10,0)

???

Linear Inequalities:

Inequality sign - could be one of the following...

When solving an in-equation, all the steps are the same EXCEPT when it comes to isolating...

Now divide both by -1

RULE: If you multiply or divide by a negative, reverse the inequality sign!!!

Favorite Numbers... What's Sheldon's???

NOTES - Graphing a Linear Inequation.docx

When the solution set to a linear inequality is continuous and the sign does not include equality, use a dashed line for the boundary and shade the solution region.

Example: Graph the solution to: 2x - 3y < 6.

-3y < 6. Chanse

First, solve for the equation in the slope – y intercept form (y = mx + b).

2x - 3y < 6 -3y < -2x + 6y > (2/3)x - 2

STEP 1: Graph the boundary line

Find the "equals" part, which is the line y = (2/3)x - 2. It looks like this:

But this example is a **strict** inequality. That is, it's only "y greater than." We denote strict inequalities on the number line (such as x > 5) by using an open dot instead of a closed dot. In the case of these linear inequalities, the notation for a strict inequality is a dashed line. So the boundary line of the solution region actually looks like this:

By using a dashed line, we can still identify the boundary line, but the dashed line indicates that the boundary line isn't included in the solution. Since this is a "y greater than" inequality, we will shade above the line, so the solution looks like this:

STEP 3: Pick a 'test point' and verify

STEP 4: Shade

VIDEO - Graphing Inequalities

Click HERE to watch the video!!!

EXAMPLE #4:

$$x \ge 4$$

$$x = \frac{y}{\text{vertical}}$$

$$\text{Test (0,0)}$$

$$\frac{(5,3) \text{RS}}{X}$$

$$0$$

HOMEWORK...

Puzzle Worksheet - Graphing Linear Inequalities with Two Variables.pdf

NOTES - Graphing Linear Relationships.docx

Puzzle Worksheet - Graphing Lines.docx

NOTES - Graphing a Linear Inequation.docx

Puzzle Worksheet - Graphing Linear Inequalities with Two Variables.pdf