1) What is matter?
2) What is the difference between "Physical Property" and "Physical Change"?
3) What are the 9 types of Physical properties/changes that we looked at"
a. \qquad
\qquad
b. \qquad :
c. \qquad :
d. \qquad $: ـ$
e. \qquad : \qquad
f. \qquad $: ـ$
g. \qquad : \qquad
h. \qquad $: ـ$
i. \qquad : \qquad
4) What is the difference between "Chemical Property" and "Chemical Change"?
5) What are the 3 main types of chemical change/property that we discussed in class:
a. \qquad _: \qquad
b. \qquad $: ـ$
c. \qquad : _
6) What are the 5 clues that a chemical change has occurred:
a. \qquad
b. \qquad
c. \qquad
d. \qquad
e. \qquad
7) Fill in the blanks:
a. Pure substance contain only \qquad type of particle. They can be \qquad and
\qquad . Pure substances cannot be broken down, therefore, \qquad and cannot be broken down.
b. Mixtures contain at least \qquad different \qquad .
c. There are two types of mixtures. They are \qquad mixtures and \qquad mixtures.
d. \qquad mixtures, every part of the mixture is the same. You \qquad see the different components making up the solution.
e. \qquad mixtures, every part of the mixture is not the same. You \qquad see the different components making up the solution.
8) Explain the statement "All compounds are molecules but not all molecules are compounds".
9) Give me an example of
a. Element: \qquad b. Compound: \qquad c. Molecule: \qquad
10) Sketch a flow chart for the following word:
a. Pure Substance, mixture, element , compound, molecule, atom, heterogeneous, homogenous
11) The \qquad is a table that contains elements. The elements are organized according to their \qquad . The rows in the periodic table run \qquad , and are numbered from \qquad to \qquad . The rows are usually called \qquad .The columns in the periodic table run \qquad and are numbered from \qquad to \qquad . The columns are usually called \qquad .
12) The majority of the elements in the periodic table are \qquad . There found on the \qquad hand side of the table.
13) What element falls in :
a. Period 5, Group 3
b. Period 4, Group 2
c) Period 2, Group 18
14) Label the periodic table with the families:
a. Transition Metals
e. Lanthanides Series
i) Alkali Metals
b. Noble Gases
f. Boron Family
j) Carbon Family
c. Chalogens Family
g. Actinides Series
k) Oxygen Family
d. Alkali Earth metals
h. Halogens

Periodic Table of the Elements

- 2013 Todd Helmenstite

15) The element Nitrogen has an atomic number of \qquad , and an atomic mass of
\qquad . It's chemical symbol is \qquad _.
a. Write the standard atomic notation for this element
16) The element Magnesium has an atomic number of \qquad and an atomic mass of \qquad . It's chemical symbol is \qquad .
a. Write the standard atomic notation for this element
17) \qquad , \qquad and \qquad are known as subatomic particle.
18) \qquad are positive charged, \qquad are negative charged and \qquad has no charge \qquad and \qquad are found in the nucleus of the atom and make up the atoms \qquad .__ is is found on the orbits of the atom.
19) In a neutral atom the number of
a. Protons = \qquad
b. Electrons = \qquad
c. Neutron = \qquad - \qquad
d. Atomic Mass = \qquad $+$ \qquad
20) Use your periodic table to fill in the missing information for the neutral atoms:

Element Name	Standard Atomic Notation	Atomic Number	Number of Protons	Number of electrons	Number of Neutrons	Mass Number
Phosphorus	7 Li 3					
		10				
Silicon			29			

21) An \qquad is an atom that has become charged by gaining or losing electrons.

When an atom losses an electron it becomes \qquad charged
When an atom gains an electron it becomes \qquad charged
22) Complete the following table for the following ions:

Ion Symbol	Charge	Protons	Electrons
$\mathbf{K}^{+\mathbf{1}}$			
$\mathbf{N i}^{\mathbf{+ 3}}$			
$\mathbf{T e}^{\mathbf{- 2}}$			
$\mathbf{A s}^{\mathbf{- 3}}$			

23) In the Bohr-Rutherford diagrams the:
a. First orbit can hold a maximum of \qquad electrons
b. The second orbit can hold a maximum of \qquad electrons
c. The third orbit can hold a maximum of \qquad electrons
d. The fourth orbit can hold a maximum of \qquad electrons
e. The fifth orbit can hold a maximum of \qquad electrons
24) Create a Bohr-Rutherford diagram for
a. Chromium (Cr)
b. Rubidium (Rb)
25) There are three rules for counting atoms:
a. \qquad only refers to the atom they are behind
b. \qquad applies to the entire compound. You must \qquad the coefficient by the \qquad .
c. If there are elements and compounds inside a bracket the \qquad following the bracket applies to all atoms inside the bracket.
26) Count the atoms in the following compounds
a. $\mathrm{Li}_{2} \mathrm{SO}_{4}$

Type of atoms	Number of atoms
Total atoms:	

b. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Type of atoms	Number of atoms
Total atoms:	

