Assignment - Angle Properties.pdf

p. 76

EXAMPLE 2 Using reasoning to determine unknown angles

Determine the measures of *a*, *b*, *c*, and *d*.

Kebeh's Solution

$$\angle a = 110^{\circ}$$

The 110° angle and $\angle a$ are corresponding. Since the lines are parallel, the 110° angle and $\angle a$ are equal.

$$\angle a = \angle b$$

Vertically opposite angles are equal.

 $\angle b = 110^{\circ}$

 $\angle c$ and $\angle a$ are interior angles on the same side of a transversal. Since the lines are parallel, $\angle c$ and $\angle a$ are supplementary. I updated the diagram.

 $\angle c = \angle d$

$$\angle d = 70^{\circ}$$

 $\angle c$ and $\angle d$ are alternate interior angles. Since the lines are parallel, $\angle c$ and $\angle d$ are equal.

The measures of the angles are:

$$\angle a = 110^{\circ}; \angle b = 110^{\circ};$$

$$\angle c = 70^{\circ}; \angle d = 70^{\circ}.$$

Using reasoning to solve problems EXAMPLE 3

JUSTIFY!!!

Tyler's Solution

MN is a transversal of parallel lines LQ and NP. ---MN intersects parallel lines LQ and NP.

 $\angle MNO + 20^{\circ} = 67^{\circ}$ Since ∠LMN and ∠MNP are alternate interior $\angle MNO = 47^{\circ}$ angles between parallel lines, they are equal.

 $\angle NMO + \angle MNO + 39^{\circ} = 180^{\circ}$ The measures of the angles in a triangle add $\angle NMO + (47^{\circ}) + 39^{\circ} = 180^{\circ}$ to 180°.

 $\angle NMO + 86^{\circ} = 180^{\circ}$

∠LMN, ∠NMO, and ∠QMO form a straight line, so $\angle NMO + \angle QMO + 67^{\circ} = 180^{\circ}$ their measures must add to 180°. $(94^{\circ}) + \angle QMO + 67^{\circ} = 180^{\circ}$ $161^{\circ} + \angle QMO = 180^{\circ}$

The measures of the angles are:

 $\angle MNO = 47^{\circ}; \angle NMO = 94^{\circ}; \angle QMO = 19^{\circ}.$

 $\angle NMO = 94^{\circ}$

 $\angle QMO = 19^{\circ}$

Geometric Proofs... The 'Two-Column Proof'

Key Terms (in your notes)...

deductive reasoning

Drawing a specific conclusion through logical reasoning by starting with general assumptions that are known to be valid.

proof

A mathematical argument showing that a statement is valid in all cases, or that no counterexample exists.

transitive property

If two quantities are equal to the same quantity, then they are equal to each other. If a = b and b = c, then a = c.

two-column proof

A presentation of a logical argument involving deductive reasoning in which the statements of the argument are written in one column and the justifications for the statements are written in the other column.

STATEMENT	JUSTIFICATION
-	_

***ADD this one to your notes...

converse

A statement that is formed by switching the premise and the conclusion of another statement.

EXAMPLES...

Conjecture: If it is raining outside, then the grass is wet.

CONVERSE: If the grass is wet, then it is raining.

THEOREM: If you have parallel lines, then the corresponding angles are equal.

CONVERSE: If the corresponding angles are equal, then the lines are parallel.

p. 29

Using deductive reasoning to prove a geometric conjecture

Prove that when two straight lines intersect, the vertically opposite angles are equal.

Jose's Solution: Reasoning in a two-column proof

Statement	Justification		\
$\angle AEC + \angle AED = 180^{\circ}$	Supplementary angles	7541	/
$\angle AEC = 180^{\circ} - \angle AED$	Subtraction property	606	
$\angle BED + \angle AED = 180^{\circ}$	Supplementary angles	PAT)	/
$\angle BED = 180^{\circ} - \angle AED$	Subtraction property		
$\angle AEC = \angle BED$	Transitive property	7	

Example #2:

a) If $\angle E = \angle y$, then prove that $EF \parallel GI$

In DEFG, GI bisects LFGH

Statement

Justification

In $\triangle EFG$, GI bisects $\angle FGH$

Homework...

p. 72: #2, 4-6

p. 78: #1, 2, 4, 8, 10, 12, 15, 20

Assignment - Angle Properties.pdf