Homework...Questions?

p. 72: #2, 4-6

p. 78: #1, 2, 4, 8, (0, 12, 15, 20

8. a) Joshua made the following conjecture: "If $AB \perp BC$ and $BC \perp CD$, then $AB \perp CD$." Identify the error in his reasoning.

DC \(\perp CD\), then 71\(\perp \perp CD\). Identity the error in this reasoning.		
Joshua's Proof) per pendicular
Statement	Justification	, [] ,
$\overline{AB \perp BC}$	Given	P A P
$BC \perp CD$	Given	\bigwedge
ABA)CD AB//(D	Transitive property	Bt

10. Jason wrote the following proof.

Identify his errors, and correct his proof.

Given:

 $QP \perp QR$

 $QR \perp RS$

 $QR \parallel PS$

Prove: QPSR is a parallelogram.

Jason's Proof	
Statement	Justification /
$\angle PQR = 90^{\circ} \text{ and } \angle QRS = 90^{\circ}$	Lines that are
	perpendicular meet at
	right angles.
$QP \parallel RS$	right angles. Since the interior angles on the same side of a Sarpher transversal are equal, QP
	on the same side of a
	transversal are equal, QP
	and RS are parallel.
$QR \parallel PS$	Given /
QPSR is a parallelogram	QPSR has two pairs of
	parallel sides.

12. Given: $\triangle FOX$ is isosceles.

$$\angle FOX = \angle FRS$$

 $\angle FXO = \angle FPQ$

Prove: $\rho PQ \parallel SR$ and $SR \parallel XO$

LFRS=LFOX Given SR//XO CA

a)

FSR=(FXO) CA

FSR=LF10

Iransit CA

2.3

Angle Properties in Triangles

GOAL

Prove properties of angles in triangles, and use these properties to solve problems.

Construct a triangle with paper...

- tear off the angles and line them up!

CONJECTURE

APPLY the Math

EXAMPLE 1

Using angle sums to determine angle measures

In the diagram, $\angle MTH$ is an **exterior angle** of $\triangle MAT$. Determine the measures of the unknown angles in $\triangle MAT$.

$$\angle MTA + \angle MTH = 180^{\circ} - \cdots$$

 $\angle MTA + (155^{\circ}) = 180^{\circ}$
 $\angle MTA = 25^{\circ}$

∠MTA and ∠MTH are supplementary since they form a straight line.

$$\angle MAT + \angle AMT + \angle MTA = 180^{\circ} - \Delta MAT + (40^{\circ}) + (25^{\circ}) = 180^{\circ} - \Delta MAT = 115^{\circ}$$

The sum of the measures of the interior angles of any triangle is 180°.

The measures of the unknown angles are:

Your Turn

If you are given one interior angle and one exterior angle of a triangle, can you always determine the other interior angles of the triangle? Explain, using diagrams.

Answer

O. S

Using reasoning to determine the relationship between the exterior and interior angles of a triangle

Determine the relationship between an exterior angle of a triangle and its non-adjacent interior angles.

Pull for Lesson Notes

Joanna's Solution

I drew a diagram of a triangle with one exterior angle. I labelled the angle measures a, b, c, and d.

$$\angle d + \angle c = 180^{\circ}$$

$$\angle d = 180^{\circ} - \angle c$$

 $\angle d$ and $\angle c$ are supplementary. $\uparrow \uparrow \uparrow \uparrow \mid$ rearranged these angles to isolate $\angle d$.

$$\angle a + \angle b + \angle c = 180^{\circ}$$

$$\angle a + \angle b = 180^{\circ} - \angle c$$

The sum of the measures of the angles in any triangle is 180°.

$$\angle d = \angle a + \angle b$$

Since $\angle d$ and $(\angle a + \angle b)$ are both equal to $180^{\circ} - \angle c$, by the transitive property, they must be equal to each other.

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles.

non-adjacent interior angles

The two angles of a triangle that do not have the same vertex as an exterior angle.

 $\angle A$ and $\angle B$ are non-adjacent interior angles to exterior $\angle ACD$.

In Summary

Key Idea

 You can prove properties of angles in triangles using other properties that have already been proven.

Need to Know

 In any triangle, the sum of the measures of the interior angles is proven to be 180°.

 The measure of any exterior angle of a triangle is proven to be equal to the sum of the measures of the two non-adjacent interior angles.

HW... Section 2.3: #1 - 13

2s3e1 finalt.mp4

PM11-2s3-2.gsp

2s3e2 finalt.mp4