

Section Review

Objectives

- Calculate the percent by mass of an element in a compound
- Interpret an empirical formula
- Compare and contrast empirical and molecular formulas

Vocabulary

- percent composition
- empirical formula

Key Equation

• % mass of element = $\frac{\text{mass of element}}{\text{mass of compound}} \times 100\%$

Part A Completion

Use this completion exercise to check your knowledge of the terms and your understanding of the concepts introduced in this section. Each blank can be completed with a term, short phrase, or number.

The <u>1</u> of a compound is the percent by mass of each element in a compound. The percent by mass of an element in a compound is the number of grams of the element per <u>2</u> g

of the compound, multiplied by 100%. To calculate the percent by

mass of an element in a known compound, divide the mass of the

element in one mole by the $_3$ and multiply by 100%.

	1.	
	2.	
	3.	
V	4.	
e	5.	
-	6	
	0.	

A(n) <u>4</u> formula represents the lowest <u>5</u> ratio of the elements in a compound. It can be calculated from a compound's percent composition. The <u>6</u> formula of a compound is either the same as its empirical formula, or it is some whole-number multiple of it.

7. It is necessary to know the formula of a compound in order to calculate its percent composition. 8. If the percent by mass of carbon in methane, CH₄, is 75%, then 100 grams of methane contain 25.0 grams of hydrogen. 9. The formula for methane, CH₄, is both a molecular and an empirical formula. 10. The empirical formula for glucose, C₆H₁₂O₆, is C₂H₄O₂.

Part C Matching

Part B True-False

Match each description in Column B to the correct term in Column A.

	Column A		Column B
 11.	percent composition	a.	describes the actual number of atoms of each element in a molecule of a compound
 12.	empirical formula	b.	the lowest whole-number ratio of atoms of the elements in a compound
 13.	molecular formula	c.	the percent by mass of each element in a compound

Part D Problems

Solve the following problems in the space provided. Show your work.

14. What is the percent composition of each of the following?

- a. Cr₂O₃ c. HgS
- **b.** $Mn_2P_2O_7$

d. $Ca(NO_3)_2$

- **15.** Determine the empirical formula of the compound with the percent composition of 29.1% Na, 40.5% S, and 30.4% O.
- 16. How many kilograms of iron can be recovered from 639 kilograms of the ore Fe_2O_3 ?

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.