19.3

STRENGTHS OF ACIDS AND BASES

Section Review

Objectives

- Define strong acids and weak acids
- Calculate an acid dissociation constant (K_a) from concentration and pH measurements
- ullet Order acids by strength according to their acid dissociation constants (K_a)
- ullet Order bases by strength according to their base dissociation constants ($K_{\rm b}$)

Vocabulary

- strong acids
- · weak acids
- acid dissociation constant (K_a)
- strong bases
- weak bases
- base dissociation constant (K_b)

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The strength of an acid or a base is determined by the1	1. degree of ionization
of the substance in solution. The acid dissociation constant,	2. <u>Ka</u>
2, is a quantitative measure of acid strength. A strong acid	3. <u>higher</u>
has a much $3 K_a$ than a weak acid. The K_a of an acid is	4pH
determined from measured4 values.	5. <u>completely</u>
Hydrochloric acid and sulfuric acid are5 ionized in	6. <u>strong</u>
solution and are6 acids. Ethanoic acid, which is only about	7. weak
1 percent ionized, is a7 acid. Magnesium hydroxide and	8. <u>bases</u>
calcium hydroxide are strong8	9. <u>water</u>
Weak bases react with9 to form the hydroxide ion and	10. acid
the conjugate of the base. Concentration in solution does	11. strong
not affect whether an acid or a base is or weak.	

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- 57 12. Acids are completely dissociated in aqueous solution.
- NT 13. Diprotic acids lose both hydrogens at the same time.
- AT 14. Acid dissociation constants for weak acids can be calculated from experimental data.
- 51 15. Bases react with water to form hydroxide ions.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column A

Column B

- a. ratio of the concentration of the dissociated (or ionized) form of an acid to the concentration of the undissociated acid
- **b.** bases that dissociate completely into metal ions and hydroxide ions in aqueous solution
- 18. acid dissociation constant (K_2)
- c. acids that ionize completely in aqueous solution
- 19. strong bases
- d. bases that do not dissociate completely in aqueous solution
- ______ 20. weak bases
- e. acids that are only partially ionized in aqueous solution
- 21. base dissociation constant (K_b)
- **f.** ratio of concentration of conjugate acid times concentration of hydroxide ion to the concentration of conjugate base

Part D Problem

Answer the following in the space provided.

22. A 0.35M solution of a strong acid, HX, has a [H⁺] of 4.1 × 10⁻². What is the value of K_a for this acid? $K_a = \frac{[H^+] \times [X^-]}{[X^-]} \qquad \qquad HX = 0.35 - 4.1 \times 10^{-2} = 0.309$

$$K_{a} = \frac{EH+J \times EX-J}{EHXJ}$$

$$= \frac{(4.1 \times 10^{-2})(4.1 \times 10^{-2})}{0.309}$$

NEUTRALIZATION REACTIONS

Section Review

Objectives

- Explain how acid-base titration is used to calculate the concentration of an acid
- Explain the concept of equivalence in neutralization reactions

Vocabulary

- neutralization reactions
- titration
- equivalence point
- end point
- standard solution

Key Equations

Acid + Base → Salt + Water

molar mass

Gram equivalent mass = -

number of ionizable hydrogens

- Normality (N) = equiv/L
- $\bullet \ \ N_1 \times V_1 = N_2 \times V_2$
- $N_A \times V_A = N_B \times V_B$

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

In the reaction of a(n) ____ with a base, hydrogen ions and 2 ions react to produce 3. This reaction, called 4 , is usually carried out by 5. The 6 in a titration is the point at which the solution is neutral. At the 7 point of a titration, the number of equivalents of acid equals the number of equivalents of base.

- acid

- 4. neutralization
- 5. titration
- 6. end point 7. equivalence

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- 8. A solution of known concentration is called a standard solution.
- 9. The end point of a titration of a strong base with a strong acid occurs when $[H^+] = [OH^-]$.
- AT 10. The point of neutralization is the end point of titration.
- NT 11. The reaction of an acid and a base produces only water.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column A

Column B

C___12. titration

- a. when the number of moles of hydrogen ions equals the number of moles of hydroxide ions
- e 13. neutralization reactions
- b. a solution of known concentration
- c. a process for determining the concentration of a solution by adding a known amount of a standard solution
- 15. standard solution
- **d.** point of neutralization
- _ **16.** end point
- e. reactions between acids and bases to produce a salt and water

Part D Problem

Answer the following in the space provided.

- 17. Complete and balance the equations for the following acid-base reactions.
 - **a.** $H_3PO_4 + Al(OH)_3$

$$H_3PO_4 + AI(OH)_3 \rightarrow 3H_2O + AIPO_4$$

 $HI + Ca(OH)_2$
 $2HI + Ca(OH)_2 \rightarrow 2H_2O + CaI_2$

b. HI + Ca(OH)₂

19.5

SALTS IN SOLUTION

Section Review

Objectives

- · Define when a solution of a salt is acidic or basic
- Demonstrate with equations how buffers resist changes in pH

Vocabulary

- salt hydrolysis
- buffers
- buffer capacity

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

A 1 forms when an acid is neutralized by a base. Salts	
can be neutral,2, or3 in solutions. Salts of strong	
acid-strong base reactions produce4 solutions with water.	
Salts formed from the neutralization of weak acids or weak bases	
5 water. They produce solutions that are acidic or basic.	
For example, the pH of a solution at the equivalence point is	
greater than 7 for a $\underline{}$ base- $\underline{}$ acid titration. Solutions	
that resist changes in pH are called8 solutions. The buffer	
9 is the amount of acid or base that can be added to a buffer	
without changing the pH greatly.	

- 1. <u>sait</u> 2. <u>acidic</u>
- 3. basic
- 5 hidsolize
- 6. streng
- 7. Weak
- 8. buller
- 9. capacity

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- NT 10. An aqueous solution of NH₄Cl is basic.
- NT 11. HCl-NaCl would be a good buffer system.
- 51 12. A buffer is a solution of a weak acid and one of its salts.
- AT 13. A strong acid and a weak base produce an acidic solution.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column A

Column B

- (L 14. salt hydrolysis
- 15. buffer
- 16. buffer capacity
- **17.** NH₄Cl

- a. the cations or anions of a dissociated salt remove hydrogen ions from or donate hydrogen ions to water
- b. the amount of acid or base that can be added to a buffer solution before a significant change in pH can occur
- c. the salt produced by the titration of ammonia with hydrochloric acid.
- **d.** a solution in which the pH remains relatively constant when small amounts of acid or base are added

Part D Question

Answer the following in the space provided.

- 18. Predict whether an aqueous solution of each salt will be acidic, basic, or neutral.
 - (NHyOH + HCI) -> acidic
 - b. Na₂CO₃ (NaOH + HCO₃) -> Activated basic c. NH₄NO₃ (NH₄OH + HNO₃) -> acidic