Untitled.notebook February 22, 2017

HOMEWORK???

p. 252: #1 - 🔊

p. 248: #4, 6

- 3. Meg is building a bookshelf to display her cookbooks and novels.
 - She has no more than 50 cookbooks and no more than 200 novels.
 - She wants to display at least 2 novels for every cookbook
 - The cookbook spines are about half an inch wide, and the novel spines are about a quarter of an inch wide.

Meg wants to know how long to make the bookshelf.

The following model represents this situation.

Let c represent the number of cookbooks.

Let *n* represent the number of novels.

Let W represent the width of the bookshelf.

- a) Which point in the feasible region represents the greatest number of books (both cookbooks and novels) that Meg could have? Explain how you know.
- b) Can she display the same number of cookbooks as novels? Explain.
- c) What point represents the most cookbooks and the fewest novels?
- d) What point represents the number of cookbooks that would require the longest shelf? How long would the shelf have to be?
- e) What point represents the number of cookbooks that would require the shortest shelf?

EXAMPLE #1...

The vertices of the feasible region of a graph of a system of linear inequalities are (-4, -8); (5, 0) and (1, -6). Which point would result in the minimum value of the objective function C = 0.50x - 0.60y?

	C= 0.50 x - 0.604
(1,-6)	0.5(-4) - 0.6(-8) = 2.8 0.5(5) - 0.6(0) = 2.5 0.5(1) - 0.6(-6) = 4.1

EXAMPLE #2...

The following model represents an optimization problem. Determine the maximum solution.

Restrictions: $x \in R$ and $y \in R$

Constraints: $y \le 1$; $2y \ge -3x + 2$; $y \ge 3x - 8$

Objective Function: D = -4x + 3y

Untitled.notebook February 22, 2017

Practice Questions...

p. 259: #1, 2, 4, 6, 11, 12, 13