1. Given that $f(x)=\sqrt{5 x-1}$ use the definition of a derivative to find $f^{\prime}(2)$.
(No other method will be accepted!)
2. Differentiate each of the following:
(a) $f(x)=\tan (3 x-5)^{3}-\sec ^{4} 2 x^{5}$
(b) $y=\frac{\cos ^{2} 5 x-\sin x^{5}}{\cot \sqrt{1-x^{2}}}$
3. Given that $f(x)=\frac{2}{\sqrt[3]{2-5 x}}$, determine the value of $f^{\prime \prime \prime}(2)$
4. Determine the equation of the tangent line drawn to the curve $x^{2}-2 x y=x^{2} y-3 x$ at the ordered pair $(-1,2)$.
5. Find the x-intercept of the tangent line drawn to the curve $f(x)=\frac{1-3 x^{3}}{\sqrt{x+5}}$ at the point where $x=-1$.
6. Find the points on the curve $y=\cos x-2 x, 0<x<2 \pi$, where a tangent to the curve would be perpendicular to the line $3 y-2 x+6=0$.
7. A particle moves along a vertical line in such a way that at time t seconds after the start, the particle is located $s=2 t^{3}-21 t^{2}+36 t+3$ metres from its starting position, where $t \geq 0$.
(a) What is the velocity of the particle when the acceleration is equal to $18 \mathrm{~m} / \mathrm{s}^{2}$?
(b) Determine the acceleration of the particle the instant it changes direction for the second time.
