Science 122 Monday, January 16/17

http://mvhs.nbed.nb.ca/

http://mvhs-sherrard.weebly.com/

- 1. Return -> SA Thermodynamics
- 2. Check -> Worksheet #64
- 3. SA Electrochemistry: Wednesday
- 4. Exam Format
- 5. Exam Review

Physics 112 Monday, January 16/17

- http://mvhs.nbed.nb.ca/
 http://mvhs-sherrard.weebly.com/
- 1. Exam Review: Problem #7 Work-Energy Theorem Problem
- 2. Check -> Worksheet Frequency, Period and Wave Speed
- 3. SA U4 Waves Thusday. Jan. Killi
- 4. Exam Review 84 Problems

Physics 112 - Exam Review: Problem #7 - Work-Energy Prob. Monday, January 16/17

Physics 122 Monday, January 16/17

http://mvhs.nbed.nb.ca/
http://mvhs-sherrard.weebly.com/

1. Worksheet: Charge and Coulomb's Law Textbook - Page 638, #1-5

Worksheet -> Textbook: C14 Page 646, #11-14 Textbook: C14 Page 655, #20-24

- 2. Series Circuits To Be Continued
- 3. Worksheet Textbook: Page 719, #27-31
- 4. SA U3 Electrostatics and Electric Circuits Thursday

Series Circuits Textbook: Page 719, C15 - PP#27-31

PRACTICE PROBLEMS

- 27. Three loads, connected in series to a battery, have resistances of 15.0 Ω , 24.0 Ω , and 36.0 Ω . If the current through the first load is 2.2A, calculate
 - (a) the potential difference across each of the loads
 - (b) the equivalent resistance for the three loads
 - (c) the potential difference of the battery
- 28. Two loads, 25.0 Ω and 35.0 Ω , are connected in series. If the potential difference across the 25.0 Ω load is 65.0 V, calculate
 - (a) the potential difference across the 35.0 Ω load
 - (b) the potential difference of the battery
- 29. Two loads in series are connected to a 75.0 V battery. One of the loads is known to have a resistance of 48.0 Ω . You measure the potential difference across the 48.0 Ω load and find it is 40.0 V. Calculate the resistance of the second load.
- 30. Two loads, R_1 and R_2 , are connected in series to a battery. The potential difference across R_1 is 56.0 V. The current measured at R_2 is 7.00 A. If R_2 is known to be 24.0 Ω . find
 - (a) the resistance of R_1
 - (b) the potential difference of the battery
 - (c) the equivalent resistance of the circuit
- 31. A 240 V (2.40×10^2 V) power supply is connected to three loads in series. The current in the circuit is measured to be 1.50 A. The resistance of the first load is 42.0 Ω and the potential difference across the second load is 111 V. Calculate the resistance of the third load.

Answers

27. (a) 33 V, 53 V and 79 V respectively

(b) 75 Ω

(c) $1.6 \times 10^2 \text{ V}$

28. (a) 91.0 V

(b) 156 V

29. 42.0 Ω

30. (a) $8.00~\Omega$ (b) 224~V (c) $32.0~\Omega$

31. 44.0 Ω

Science 10 Monday, January 16/17

- http://mvhs.nbed.nb.ca/
- http://mvhs-sherrard.weebly.com/
- 1. Assignment Oh, What a Tangled Web Due Today: Monday, Jan. 16/17
- 2. Optional: Article Review Indicator Species Friday, Jan. 20/17
- 3. Biodiversity
- 4. Change and Stability in Ecosystems
- 5. DDT Cats in Borneo
- 6. Bioaccumulation and Biomagnification
- 7. Sustainability
- 8. Last Assessment Before Exam! _______.
- 9. Practice Exam