

Warm Up Day 2

Create a table of values for the equation: y = 3x + 8

Concrete vs. Discrete

Discrete: Unconnected

Continuous: Connected

Cost of video games

X		
Number of Video games	Cost, C(\$)	
1 65 (No) 2	25	
	50	
3	75	

Can you buy 1.5 video games?

So would you connect the dots???

Babysitting Job

Number of Hours	Earnings, C(\$)
1 1.5 (yes	10
2	20
3	30

Can you work 1.5 hours?

So would you connect the dots???

A relationship has the equation: y = 7-2x

a) Create a table of values for the relation for values -2 to 2.

X	y	We have to do some w	ork!
<u>-2</u>	ິ ^ແ)-ລ	for $x = -2$	
-1	9	y = A - Ax	y= 7-2x
0) -2 -2	y=7-2(-2)	y=7-2(-1)
U	+)-2	7-7+4	J=7 +2
1	5)-2	y= 11	y = 9
2	3 -		

Choose Numbers that are easy to work with

$$y = \frac{2y}{2x} \times \pm \pm \qquad y = \frac{2}{3}(-3) + 1 \qquad y = \frac{3}{3}(-3) + 1$$

$$y = \frac{2}{3} \times \pm 1 \qquad y = -2 + 1 \qquad y = 0 + 1$$

$$y = -1 \qquad y = 1$$

$$y = \frac{3}{3}(-3) + 3$$
 $y = -1$

$$y = \frac{3}{3}(0) + 1$$

$$y = 1$$

Example: Please turn to page 164 in MMS9.

When a scuba diver goes under water, the weight of the water exerts pressure on the diver.

What pattern do you see in the table?

$$y = \frac{50}{5} \times \pm \pm$$

$$y = \frac{50}{5} \times \pm$$

What pattern do you see in the graph?

$$y = \frac{1}{2}x + 3$$

$$y = \frac{1}{2}(-2) + 3$$

$$y = \frac{1}{2}(0) + 3$$

$$y = \frac{1}(0) + 3$$

$$y = \frac{1}{2}(0) + 3$$

$$y = \frac{1}{2}(0) + 3$$

$$y = \frac{1}{2}$$

A photographer charges a sitting fee of \$10 and \$5 for every photograph ordered.

1. How many photographs could you get for \$35?

$$T = 5 p + 10$$
 $35 = 5 p + 10^{-10}$
 $25 = 5 p$

2. How much would it cost for 8 photographs?

$$T = 5p + 10$$
 $T = 5(8) + 10$
 $T = 40 + 10$
 $T = 50$

Gass Tomework

Page 171 - 173

#7d,

#8

#9 a,c

#10 c,e

#11,

14

