

Central Angle:

The angle formed by joining the endpoints of a arc to the centre of a circle

(Made with 2 radii)

< A Q B

Inscribed Angle:

The angle formed by joining the endpoints of a arc to a point on the circle

(Made with two chords)

LAC B

Inscribed and central angles are **SUBTENDED** by the MINOR arc

come from the same 'smaller arc'

Central Angle & Inscribed Angle Property

Property 1: (Ins/Cent <,

In a circle, the measure of a central angle subtended by an arc is TWICE the measure of an inscribe angle subtended by the same arc.

Central angle is twice the inscribed angle

or

$$<\underline{PRQ} = \frac{1}{2} < \underline{PQQ}$$

Inscribed angle is half the center angle

Inscribed Angle Property

Property 2: (Ins<,____

In a circle, all inscribed angles subtended by (coming from) the same arc are congruent (equal).

Angles is a Semicircle Property

Property 3: (Ins <, diam)

All inscribed angles subtended by a semicircle are right angles

Makes sense

Inscribed angles are always half the centre

Center Angle = 180° (Straight Line)

Inscribed angle is half the Central Angle

Inscribed = (1/2) central =(1/2) 180° = 90°

Cyclic Quadrilateral Angle Properties:

Property 4: (Cy Quad)

__The opposite angles of an inscribed **quadrilateral** are supplementary.

(their sum is 180°)

ABCD is an inscribed quadrilateral.

< A and < C are opposite therefore, < A + < C = 180

< B and < D are opposite therefore, < B + < D = 180 $^{\circ}$

Section 8. 3: Circle Properties reasoning

```
(ins/cent <, __)
(ins<, __)
(ins <, dia)
(CyQuad)
(SATT)
(ITT)
(SAT)
(CyAT)
```


Example 1 Using Inscribe and Central Angles

Point O is the center of a circle. Determine the values of \Re and \mathfrak{t}° .

Example 2

Applying the Property of an Angle Inscribed in a Semicircle

Point O is the center of the circle. Determine the value of x° and y° .

For Y°

For X°

Example 3Determining Angles in an Inscribed Triangle

Determining the values of x °, y°, z°, m°, n°

Hint: LOOK AT CENTER ANGLES and Complete the circle for x

Example 3Determining Angles in an Inscribed Triangle

Determining the values of x °, y°, z°, m°, n°

Worksheet - Angles in a Circle.doc