

MAY 17, 2017

UNIT 8: CIRCLE GEOMETRY

8.3: PROPERTIES OF ANGLES IN A CIRCLE

M. MALTBY INGERSOLL MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 1" OR "SS1" which states:

- "Solve problems and justify the solution strategy using circle properties, including:
- * the perpendicular from the centre of a circle to a chord bisects the chord;
- * the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc:
- * the inscribed angles subtended by the same arc are congruent;
- * a tangent to a circle is perpendicular to the radius at the point of tangency."

1. ARC: A section of the circumference of a circle. In the diagram below, the shorter arc AB is the MINOR ARC, and the longer arc AB is the

MAJOR ARC.

- 2. CENTRAL ANGLE: The angle formed by joining the endpoints of an arc to the centre of the circle. (This is done using 2 radii.)
- 3. INSCRIBED ANGLE: The angle formed by joining the endpoints of an arc to a point on the circle.

The inscribed and central angles in this circle are **SUBTENDED** by the minor arc AB.

4. CENTRAL ANGLE AND INSCRIBED ANGLE PROPERTY (CIAP): In a circle, the measure of a central angle subtended by an arc is TWICE the measure of an inscribed angle subtended by the SAME arc.

5. INSCRIBED ANGLES PROPERTY (IAP): In a circle, ALL inscribed angles subtended by the SAME arc are congruent (equal).

LPTQ = LPS Q = LPRQ = 30° (IAP)

6. ANGLES IN A SEMICIRCLE PROPERTY

(ASP): All inscribed angles subtended by a semicircle are RIGHT angles.

This makes sense - think of CIAP; an inscribed angle is half the central angle when the are subtended by the same arc

LAFB=LAGB=LAHB=90°(ASP)

7. OPPOSITE ANGLES IN A CYCLIC QUADRILATERAL PROPERTY (CQP):

The opposite angles in a cyclic quadrilateral (a quadrilateral whose vertices all touch the circumference of a circle) add up to 180°.

EXAMPLE: USING INSCRIBED AND CENTRAL AN

Point O is the center of a circle. Determine the values of \Re and \Re .

EXAMPLE: APPLYING THE ANGLES IN A SEMICIRCLE P

Point O is the center of the circle. Determine the values of x° and y° .

METHOD # 1

EXAMPLE: APPLYING THE ANGLES IN A SEMICIRCLE P

Point O is the center of the circle. Determine the values of x° and y° .

METHOD # 2

LAOB=64°(CIAP) LABO=58°(ITT(SAFT)

EXAMPLE: DETERMINING ANGLES IN AN INSCRIBED TI

Determine the values of x° , y° , and z° . (HINT: There are 360° in a circular rotation.)

CONCEPT REINFORCEMENT:

MM59:

PAGE 410: #3 TO #5

PAGE 411: #6 & #11

Worksheet - Angles in a Circle.doc