MAY 18, 2017

UNIT 3: LINEAR RELATIONS
AND FUNCTIONS

SECTION 6.4: SLOPE-INTERCEPT FORM OF THE EQUATION FOR A LINEAR FUNCTION

M. MALTBY INGERSOLL
NUMBERS, RELATIONS AND FUNCTIONS 10

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the NRF 10 Specific Curriculum Outcomes (SCOs) "Relations and Functions 6 and 7" OR "RF6 and RF7" which state:

RF6: "Relate linear functions expressed in: slope-intercept form (y = mx + b), general form (Ax + By + C = 0) and slope-point form $[y - y_1 = m(x - x_1)]$ "

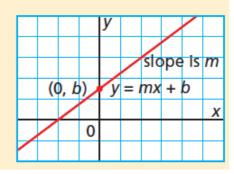
AND

RF7: "Determine the equation of a linear relation given: a graph, a point and the slope, two points, a point and the equation of a parallel or perpendicular line or a scatter plot."

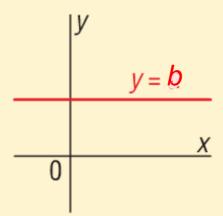
What does THAT mean???

SCO RF6 means that we will:

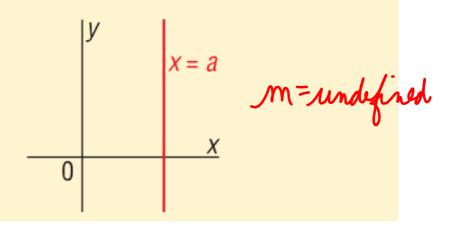
- * express a linear relation in slope-intercept, general and slope-point forms and compare the graphs
- * generalize and explain strategies for graphing a linear relation in slope-intercept, general or slope-point form
- * graph a linear relation given in slope-intercept, general or slope-point form
- * identify equivalent linear relations from a set of linear relations
- * match a set of linear relations to their graphs


What does THAT mean???

SCO RF7 means that we will:


- * determine the slope and y-intercept of a given linear relation from its graph and write the equation in the form y = mx + b
- * write the equation of a linear relation given its slope and the coordinates of a point on the line and explain the reasoning
- * write the equation of a linear relation given the coordinates of two points on the line and explain the reasoning
- * write the equation of a linear relation given the coordinates of a point on the line and the equation of a parallel or perpendicular line and explain the reasoning
- * graph linear data generated from a context and write the equation of the resulting line
- * solve a contextual problem using the equation of a linear relation

Slope-Intercept Form of the Equation of a Linear Function


The equation of a linear function can be written in the form y = mx + b, where m is the slope of the line and b is its y-intercept.

The graph of the equation y = b, where b is a constant, is a horizontal line. Every point on the graph has a y-coordinate of b.

The graph of the equation x = a, where a is a constant, is a vertical line. Every point on the graph has an x-coordinate of a.

HOMEWORK QUESTIONS?

(page 362, #4 TO #9 & #11)

EXAMPLE:

The student council sponsored a dance. A ticket cost \$5 and the cost for the DJ was \$300.

- a) Write an equation for the profit *P* dollars, on the sale of *t* tickets.
- b) Suppose 123 people bought tickets. What was the profit?
- c) Suppose the profit was \$350. How many people bought tickets?
- d) Could the profit be exactly \$146? Justify the answer.

SOLUTIONS:

- a) P = 5t 300
- **b**) Use the equation:

$$P = 5t - 300$$

$$P = 5(123) - 300$$

$$P = 615 - 300$$

$$P = 315$$

The profit was \$315.

SOLUTIONS (continued):

c) Use the equation:

$$P = 5t - 300$$

$$350 = 5t - 300$$

$$350 + 300 = 5t - 300 + 300$$

$$650 = 5t$$

$$\frac{650}{5} = \frac{5t}{5}$$

$$130 = t$$

One hundred thirty people bought tickets.

SOLUTIONS (continued):

d) Use the equation:

$$P = 5t - 300$$

$$146 = 5t - 300$$

$$146 + 300 = 5t - 300 + 300$$

$$446 = 5t$$

$$\frac{446}{5} = \frac{5t}{5}$$

$$89.2 = t$$

Since the number of tickets sold is not a whole number, the profit cannot be exactly \$146.

YOU TRY!

To join the local gym, Karim pays a start-up fee of \$99, plus a monthly fee of \$29.

- a) Write an equation for the total cost, C dollars, for n months at the gym.
- **b**) Suppose Karim went to the gym for 23 months. What was the total cost?
- c) Suppose the total cost was \$505. For how many months did Karim use the gym?
- **d**) Could the total cost be exactly \$600? Justify your answer.

[Answers: a)
$$C = 29n + 99$$
 b) \$766 c) 14 months d) no]

b)
$$C = 29n + 99$$
 c) $C = 29n + 99$
 $C = 29(23) + 99$ 505= 29n + 99
 $C = 667 + 99$ 406 = 29n
 $C = 4766$ 14 = n

d)
$$C = 29n + 99$$

 $600 = 29n + 99$ No
 $501 = 29n$
 $17.27... = n$

CONCEPT REINFORCEMENT:

FPCM 10:

Page 362: #12

Page 363: #13, #14, #16 and #17
Page 364: #18 TO #24

Worksheet - Function Notation.pdf