MAY 19, 2017

UNIT 3: LINEAR RELATIONS
AND FUNCTIONS

SECTION 6.5: SLOPE-POINT FORM OF THE EQUATION FOR A LINEAR FUNCTION

M. MALTBY INGERSOLL
NUMBERS, RELATIONS AND FUNCTIONS 10

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the NRF 10 Specific Curriculum Outcomes (SCOs) "Relations and Functions 6 and 7" OR "RF6 and RF7" which state:

RF6: "Relate linear functions expressed in: slope-intercept form (y = mx + b), general form (Ax + By + C = 0) and slope-point form $[y - y_1 = m(x - x_1)]$ "

AND

RF7: "Determine the equation of a linear relation given: a graph, a point and the slope, two points, a point and the equation of a parallel or perpendicular line or a scatter plot."

What does THAT mean???

SCO RF6 means that we will:

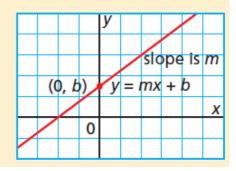
- * express a linear relation in slope-intercept, general and slope-point forms and compare the graphs
- * generalize and explain strategies for graphing a linear relation in slope-intercept, general or slope-point form
- * graph a linear relation given in slope-intercept, general or slope-point form
- * identify equivalent linear relations from a set of linear relations
- * match a set of linear relations to their graphs

What does THAT mean???

SCO RF7 means that we will:

- * determine the slope and y-intercept of a given linear relation from its graph and write the equation in the form y = mx + b
- * write the equation of a linear relation given its slope and the coordinates of a point on the line and explain the reasoning
- * write the equation of a linear relation given the coordinates of two points on the line and explain the reasoning
- * write the equation of a linear relation given the coordinates of a point on the line and the equation of a parallel or perpendicular line and explain the reasoning
- * graph linear data generated from a context and write the equation of the resulting line
- * solve a contextual problem using the equation of a linear relation

HOMEWORK QUESTIONS?


(pages 362 / 363 / 364, #12, #13, #14 and #16 to #24)

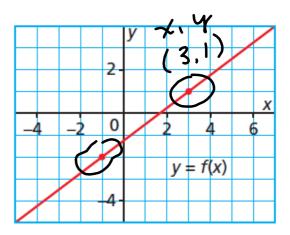
12.b)
$$y = mx + b$$
 $m = nse$
 $y = 4x - b$ $m = 4$
 $= 4$

AT THIS POINT, YOU KNOW HOW TO EXPRESS A LINEAR FUNCTION USING THE:

Slope-Intercept Form of the Equation of a Linear Function

The equation of a linear function can be written in the form y = mx + b, where m is the slope of the line and b is its y-intercept.

TODAY, YOU WILL LEARN HOW TO EXPRESS A LINEAR FUNCTION USING THE:


Slope-Point Form of the Equation of a Linear Function

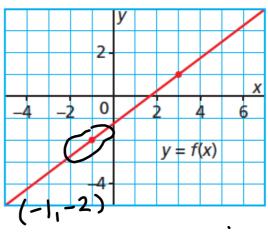
The equation of a line that passes through $P(x_1, y_1)$ and has slope m is: $y - y_1 = m(x - x_1)$

EXAMPLE:

- a) Write an equation in slope-point form for this line.
- **b**) Write the equation in part a in slope-intercept form. What is the *y*-intercept of this line?

a)
$$y-y_1 = m(x-x_1)$$

 $y-1 = \frac{3}{4}(x-3)$

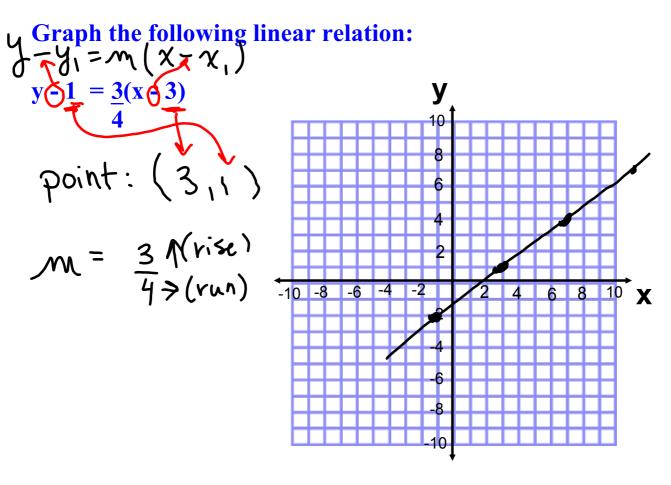

m = ruse

b)
$$y-1 = \frac{3}{4}(x-\frac{3}{4}) \Rightarrow y = mx+b$$

 $y-1 = \frac{3}{4}x - \frac{9}{4}$
 $y = \frac{3}{4}x - \frac{9}{4} + \frac{1}{4}$
 $y = \frac{3}{4}x - \frac{9}{4} + \frac{4}{4}$
 $y = \frac{3}{4}x - \frac{5}{4}$ $M = \frac{3}{4}$ $b = -\frac{5}{4}$

EXAMPLE:

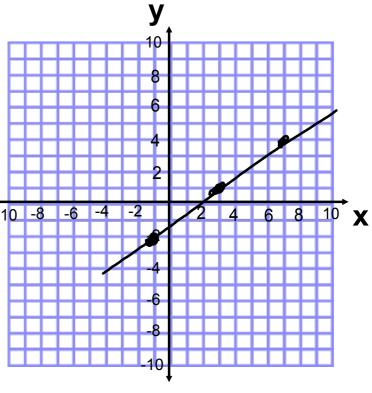
- a) Write an equation in slope-point form for this line.
- b) Write the equation in part a in slope-intercept form. What is the y-intercept of this line?


a)
$$y-y_1 = m(x-x_1)$$

 $y-(-2) = \frac{3}{4} \left[x-(-1)\right]$
 $y+2 = \frac{3}{4} (x+1)$

b)
$$y = mx + b$$

 $y + 2 = \frac{3}{4}(x + 1)$
 $y + 2 = \frac{3}{4}x + \frac{3}{4}$
 $y = \frac{3}{4}x + \frac{3}{4} - \frac{2}{4}$
 $y = \frac{3}{4}x + \frac{3}{4} - \frac{8}{4}$
 $y = \frac{3}{4}x - \frac{5}{4}$
 $y = \frac{3}{4}x - \frac{5}{4}$



$$m = \frac{3}{4} / (rise)$$

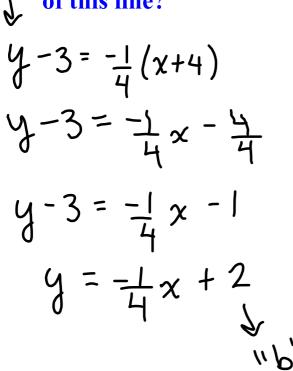
point:
$$(-1, -2)$$
 $M = \frac{3}{4} \wedge (nise)$
 $(run)^{-10-8}$

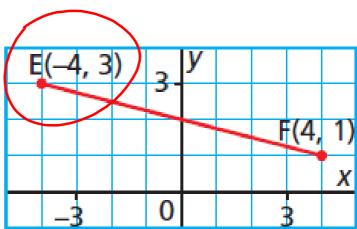
YOU TRY!

- a) Write an equation in slope-point form for this line. Use point (1, 1)
- y y = g(x) x -2 0 2 4
- b) Write the equation in part a in slope-intercept form. What is the *y*-intercept of this line?

What is the *y*-interced this line?

$$y - 1 = \frac{1}{3}(x - 1)$$
 $y - 1 = \frac{1}{3}x + \frac{1}$


[Answers: a) sample answer:


$$y - 1 = -\frac{1}{3}(x - 1)$$
1 4 4

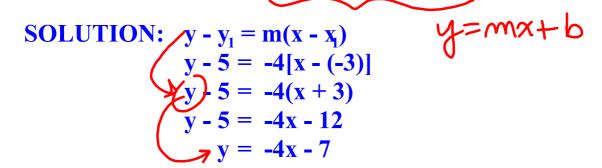
b)
$$y = -\frac{1}{3}x + \frac{4}{3}; \frac{4}{3}$$
]

YOU TRY!

- a) Write an equation in slope-point form for this line.
- b) Write the equation from part a in slope-intercept form. What is the y-intercept of this line?

ANSWERS:

a) y - 1 =
$$1(x - 4)$$
 OR y - 3 = $1(x + 4)$


b)
$$y = -1x + 2$$
; y-intercept = 2

EXAMPLE: A line with a slope of 2 passes through the point (7, 8). Determine the equation of this line in slope-intercept form

SOLUTION:
$$y - y_1 = m(x - x_1)$$

 $y - 8 = 2(x - 7)$
 $y - 8 = 2x - 14$
 $y = 2x - 6$

YOU TRY!

EXAMPLE: A line with a slope of -4 passes through the point (-3, 5). Determine the equation of the line in slope-intercept form.

CONCEPT REINFORCEMENT:

FPCM 10:

Page 372: #5, #6 and #9
Page 373: #12 and #14

Worksheet - Function Notation.pdf